Linux文件结构:
文件结构是文件存放在磁盘等存储设备上的组织方法。主要体现在对文件和目录的组织上。目录提供了管理文件的一个方便而有效的途径。我们能够从一个目录切换到另一个目录,而且可以设置目录和文件的权限,设置文件的共享程度,这一切操作和Microsoft
windows系统很相似。使用Linux,用户可以设置目录和文件的权限,以便允许或拒绝其他人对其进行访问。Linux目录采用多级树形结构。用户可以浏览整个系统,可以进入任何一个已授权进入的目录,访问那里的文件。文件结构的相互关联性使共享数据变得容易,几个用户可以访问同一个文件。Linux是一个多用户系统,操作系统本身的驻留程序存放在以根目录开始的专用目录中,有时被指定为系统目录。内核,Shell和文件结构一起形成了基本的操作系统结构。它们使得用户可以运行程序,管理文件以及使用系统。此外,Linux操作系统还有许多被称为实用工具的程序,辅助用户完成一些特定的任务。
Linux文件下的操作:
文件是linux中的一个重要概念。在Linux中,一切(几乎一切)都是文件。简单的说,C中基本的的printf()函数,scanf()函数,其实都属于文件操作。对于文件操作,虽然都是通过函数调用的方式实现,却还是能分为两类:系统调用和库函数。
不带缓存的I/O操作:
不带缓存的I/O对是文件描述符操作,下面带缓存的I/O是针对流的。
标准I/O库就是带缓存的I/O,它由ANSI C标准说明。当然,标准I/O最终都会调用上面的I/O例程。标准I/O库代替用户处理很多细节,比如缓存分配、以优化长度执行I/O等。
标准I/O提供缓存的目的就是减少调用read和write的次数,它对每个I/O流自动进行缓存管理(标准I/O函数通常调用malloc来分配缓存)。它提供了三种类型的缓存:
1) 全缓存。当填满标准I/O缓存后才执行I/O操作。磁盘上的文件通常是全缓存的。
2) 行缓存。当输入输出遇到新行符或缓存满时,才由标准I/O库执行实际I/O操作。stdin、stdout通常是行缓存。
3) 无缓存。相当于read、write了。stderr通常是无缓存的,因为它必须尽快输出。
一般而言,由系统选择缓存的长度,并自动分配。标准I/O库在关闭流的时候自动释放缓存。
在标准I / O库中,一个效率不高的不足之处是需要复制的数据量。当使用每次一行函数fgets和fputs时,通常需要复制两次数据:一次是在内核和标准I / O缓存之间(当调用read和write时),第二次是在标准I / O缓存(通常系统分配和管理)和用户程序中的行缓存(fgets的参数就需要一个用户行缓存指针)之间。
不管上面讲的到底懂没懂,记住一点:使用标准I / O例程的一个优点是无需考虑缓存及最佳I / O长度的选择,并且它并不比直接调用read、write慢多少。
带缓存的I/O操作:
带缓存的文件操作是标准C 库的实现,第一次调用带缓存的文件操作函数时标准库会自动分配内存并且读出一段固定大小的内容存储在缓存中。所以以后每次的读写操作并不是针对硬盘上的文件直接进行的,而是针对内存中的缓存的。何时从硬盘中读取文件或者向硬盘中写入文件有标准库的机制控制。不带缓存的文件操作通常都是系统提供的系统调用,更加低级,直接从硬盘中读取和写入文件,由于 IO瓶颈的原因,速度并不如意,而且原子操作需要程序员自己保证,但使用得当的话效率并不差。另外标准库中的带缓存文件IO 是调用系统提供的不带缓存IO实现的。
这里为了说明标准I/O的工作原理,借用了glibc中标准I/O实现的细节,所以代码多是不可移植的。
buffered I/O, 即标准I/O
首先,要明确,unbuffered I/O只是相对于buffered I/O,即标准I/O来说的.
而不是说unbuffered I/O读写磁盘时不用缓冲.实际上,内核是存在高速缓冲区来进行真正的磁盘读写的,不过这里要讨论的buffer跟内核中的缓冲区无关。
buffered I/O的目的是什么呢?
很简单,buffered I/O的目的就是为了提高效率请明确一个关系,那就是,
buffered I/O库函数(fread, fwrite等,用户空间) <----call---> unbuffered I/O系统调用(read,write等,内核空间)<-------> 读写磁盘buffered I/O库函数都是调用相关的unbuffered I/O系统调用来实现的,他们并不直接读写磁盘。那么,效率的提高从何而来呢?注意到,buffered I/O中都是库函数,而unbuffered I/O中为系统调用,使用库函数的效率是高于使用系统调用的。
关于write系统调用的说明
write,就是把缓冲区的数据写入文件中。注意,这里的文件时广泛意义的文件,比如写入磁盘、写入打印机等等。
Linux中write()的函数原型:
size_t write(int fildes, const void *buf, size_t nbytes);
参数说明:
fildes:文件描述符,标识了要写入的目标文件。例如:fildes的值为1,就像标准输出写数据,也就是在显示屏上显示数据;如果为2 ,则想标注错误写数据。
*buf:待写入的文件,是一个字符串指针。
nbytes:要写入的字符数。
函数返回值:size_t 返回成功写入文件的字符数。需要指出的是,write可能会报告说他写入的字节比你所要求的少。这并不一定是个错误。在程序中,你需要检查
error已发现错误,然后再次调用write写入剩余的数据。
关于read系统调用的说明
系统调用read是从文件中读出数据。要读取的文件用文件描述符标识,数据读入一个事先定义好的缓冲区。他返回实际读入的字节数。
Linux中read的函数原型:
size_t read(int fildes, void *buf, size_t nbytes);
参数说明:
fildes:文件描述符,标识要读取的文件。如果为0,则从标准输入读数据。类似于scanf()的功能。
*buf:缓冲区,用来存储读入的数据。
nbytes:要读取的字符数。
返回值:size_t返回成功读取的字符数,它可能会小于请求的字节数。
关于open系统函数的说明
系统调用open的作用是打开一个文件,并返回这个文件的描述符。
简单地说,open建立了一条到文件或设备的访问路径。如果操作成功,它将返回一个文件描述符,read和write等系统调用使用该文件描述符对文件或
设备进行操作。这个文件描述符是唯一的,他不会和任何其他运行中的进程共享。如果两个程序同时打开一个文件,会得到两个不同的问价描述符。如果
同时对两个文件进行操作,他们各自操作,互补影响,彼此相互覆盖(后写入的覆盖先写入的)为了防止文件按读写冲突,可以使用文件锁的功能。这不是
本次重点,以后介绍。
Linux中open的函数原型有两个:
int open(const char *path, int oflags);
int open(const char *path, int oflags, mode_t mode );
参数说明。
path:准备打开的文件或设备名字。