R3Det: Refined Single-Stage Detector with Feature Refinementfor Rotating Object论文学习

R3Det是一种基于RetinaNet的一阶段目标检测方法,通过引入特征细化模块(FRM)及近似偏斜损失函数,有效解决了大纵横比、密集及旋转目标的检测难题。在多个数据集上的实验证明了其优越性。

该论文为one-stage目标检测。是以RetinaNet为基础,增加了FRM(feature refinement module)以及设计了一个可导的近似偏斜损失函数(approximate SkewIoU),目的为了解决目标检测的三大挑战:1.大纵横比目标,2.密集目标的图像,3.任意旋转目标的图像。针对不同的场景做出相对应的解决方案。

网络结构

该论文是在RetinaNet的基础上进行增加新的模块和改变损失函数设计而成的,每层FPN连接着分类子网(class subnet)和边界盒回归子网(box subnet)以及FRM(feature refinement module)。

1.分类子网(class subnet)

FPN的每层都都连接着两个分类子网,第一个分类子网是直接接收FPN层输入的feature map,第二个分类子网接收的是FRM处理过后的feature map。

2.边界盒回归子网(box regression subnet)

 与分类子网相同。

3.FRM(feature refinement module)

FRM同时接收第一个分类回归子网的特征和FPN层输入的特征,将这两个特征进行堆叠然后进行卷积操作输入到第二个分类回归子网。

4.anchor的设计

在FPN的p3~p7层对应着面积为32^{2}~512^{2}的anchor,并且每层使用长宽比例为{1, 1/2, 2, 1/3,  3,

评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值