
流计算
w_j_w2010
生于龙门镇,学于天河东,顠于四海,无归处。
展开
-
实时计算,流数据处理系统简介与简单分析
大数据实时计算流计算 摘要:实时计算一般都是针对海量数据进行的,一般要求为秒级。实时计算主要分为两块:数据的实时入库、数据的实时计算。今天这篇文章详细介绍了实时计算,流数据处理系统简介与简单分析。 编者按:互联网领域的实时计算一般都是针对海量数据进行的,除了像非实时计算的需求(如计算结果准确)以外,实时计算最重要的一个需求是能够实时响应计算结果,一般要求为秒级。实时计算的今天,业界都没有一转载 2015-11-26 11:55:12 · 1958 阅读 · 0 评论 -
Storm:最火的流式处理框架
诞 生 在2011年Storm开源之前,由于Hadoop的火红,整个业界都在喋喋不休地谈论大数据。Hadoop的高吞吐,海量数据处理的能力使得人们可以方便地处理海量数据。但是,Hadoop的缺点也和它的优点同样鲜明——延迟大,响应缓慢,运维复杂。 有需求也就有创造,在Hadoop基本奠定了大数据霸主地位的时候,很多的开源项目都是以弥补Hadoop的实时性为目标而被创造出来。而在这个节骨眼上S转载 2015-11-26 14:01:59 · 448 阅读 · 0 评论 -
大数据处理 Hadoop、HBase、ElasticSearch、Storm、Kafka、Spark
摘要 storm简介 场景 伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样、更加便捷,同时对于信息的时效性要求也越来越高。举个搜索场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的当然是这个宝贝马上就可以被卖家搜索出来、点击、购买啦,相反,如果这个宝贝要等到第二天或者更久才可以被搜出来,估计这个大哥就要骂娘了。再举一个推荐的例子,如转载 2015-11-26 14:10:42 · 5552 阅读 · 0 评论