poj 1679 The Unique MST

本文介绍了一种算法来判断给定图的最小生成树是否唯一,并详细解释了通过求次小生成树来验证最小生成树唯一性的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Unique MST
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 32373 Accepted: 11743
Description

Given a connected undirected graph, tell if its minimum spanning tree is unique.

Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
1. V’ = V.
2. T is connected and acyclic.

Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
Input

The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output

For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
Sample Input

2
3 3
1 2 1
2 3 2
3 1 3
4 4
1 2 2
2 3 2
3 4 2
4 1 2
Sample Output

3
Not Unique!

题意:给你一个图,判断其最小生成树是否唯一

求其次小生成树,如果次小生成树与最小生成树总权值相同,则说明不唯一,否则唯一

次小生成树求法:先用prime求出最小生成树,在求的过程中记录下来从点i到点j路径中最大的那条边的权值,然后再枚举没在最小生成树中的边,进行替换最小生成树中的边,如果能替换并且替换之后权值不变则不唯一。(现学现卖)

#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <string.h>
#define maxn 1100
#define INF 999999999
int edge[maxn][maxn];
bool vis[maxn];
int lowcost[maxn];
bool used[maxn][maxn];
int Max[maxn][maxn];
int pre[maxn];
using namespace std;
int n,m;
int prime(int num)
{
    memset(used,0,sizeof(used));
    memset(Max,0,sizeof(Max));
    vis[num] = 1;
    pre[num] = -1;
    for(int i = 1; i <= n; i++)
    {
        if(i == num) continue;
        lowcost[i] = edge[i][num];
        pre[i] =num;
    }
    int sum = 0;
    for(int i = 1; i < n; i++)
    {
        int minn = INF;
        int temp;
        for(int j = 1;j <= n; j++)
        {
            if(vis[j] == 0 && lowcost[j] < minn)
            {
                minn = lowcost[j];
                temp = j;
            }
        }
        if(minn == INF) return -1;
        vis[temp] = 1;
        sum += minn;
        used[temp][pre[temp]] = used[pre[temp]][temp] = 1;
        for(int j = 1; j <= n; j++)
        {
            if(vis[j] == 1)
            {
                Max[j][temp] = Max[temp][j] = max(Max[j][pre[temp]],lowcost[temp]);
            }
            if(vis[j] == 0 && lowcost[j] > edge[j][temp])
            {
                lowcost[j] = edge[j][temp];
                pre[j] = temp;
            }
        }
    }
    return sum;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(vis,0,sizeof(vis));
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                edge[i][j] = INF;
            }
        }
        for(int i = 0; i < m; i++)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            edge[u][v] = edge[v][u] = w;
        }
        int ans = prime(1);
        if(ans == -1)
        {
            printf("Not Unique!\n");
            continue;
        }
        int Min = INF;
        for(int i = 1; i <= n; i++)
        {
            for(int j =i+1; j <= n; j++)
            {
                if(edge[i][j] != INF && !used[i][j])
                {
                    Min = min(Min,ans+edge[i][j]-Max[i][j]);
                }
            }
        }
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                printf("%d ",Max[i][j]);
            }
            printf("\n");
        }
        if(Min == ans) printf("Not Unique!\n");
        else printf("%d\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值