传送门:点击打开链接
Sereja has an array a, consisting of n integers a1, a2, ..., an. The boy cannot sit and do nothing, he decided to study an array. Sereja took a piece of paper and wrote out m integers l1, l2, ..., lm (1 ≤ li ≤ n). For each number li he wants to know how many distinct numbers are staying on the positions li, li + 1, ..., n. Formally, he want to find the number of distinct numbers among ali, ali + 1, ..., an.?
Sereja wrote out the necessary array elements but the array was so large and the boy was so pressed for time. Help him, find the answer for the described question for each li.
The first line contains two integers n and m (1 ≤ n, m ≤ 105). The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 105) — the array elements.
Next m lines contain integers l1, l2, ..., lm. The i-th line contains integer li (1 ≤ li ≤ n).
Print m lines — on the i-th line print the answer to the number li.
10 10 1 2 3 4 1 2 3 4 100000 99999 1 2 3 4 5 6 7 8 9 10
6 6 6 6 6 5 4 3 2 1
题意:给出一个数列长度为n,m次询问,每次输入一个l,要求输出区间[l,n]中有多少个不同的数。
思路:用线段数进行预处理,处理出每个位置到n的这个区间内不同数的个数。将线段树按值建树,从数列的尾部往前面扫描,对于数列的每一个数a[i],在线段树中,如果a[i]处为0的话,把它改成1,否则不变,然后再对整个线段树的区间求和,就是第i个位置的答案。
代码:
#include<cstdio>
#include<cstring>
#define maxn 100005
int sum[maxn << 2];
void update(int id, int L, int R, int pos)
{
if (L == R) sum[id] = 1;
else
{
int mid = (L + R) >> 1;
if (pos <= mid) update(id << 1, L, mid, pos);
else update(id << 1 | 1, mid + 1, R, pos);
sum[id] = sum[id << 1] + sum[id << 1 | 1];
}
}
int a[maxn];
int ans[maxn];
int main()
{
int n, m;
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
memset(sum, 0, sizeof(sum));
for (int i = n; i >= 1; i--)
{
update(1, 1, 100000, a[i]);
ans[i] = sum[1];
}
while (m--)
{
int x;
scanf("%d", &x);
printf("%d\n", ans[x]);
}
return 0;
}
还有就是DP的做法,时间复杂度仅为O(n),dp[i]=dp[i+1]+(vis[ai]]);
用bool vis[i]记录是否出现过。