分层时态记忆的神经网络形态结构

本文提出了一种全尺寸HTM架构,适用于空间池和时间内存,显著提升了处理速度。通过在XilinxZYNQ-7上实现,对于MNIST和EUNF数据集分别达到了91.16%和90%的分类精度。序列预测任务中,准确率达到95%。与软件实现相比,硬件加速高达1364倍。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  在人工智能时代,仿生机器智能算法,其在创建时空输入流的不变表示方面具有前景,是分层时间存储器(HTM)。这种无监督的在线算法已经在几个机器学习任务中得到证明,包括异常检测。在将HTM算法形式化并应用于不同类别的问题方面已经做出了重大努力。HTM硬件架构的早期探索很少,特别是对于早期版本的HTM算法的空间池。

  在本文中,我们提出了一个用于空间池和时间内存的全尺寸HTM架构。提出合成突触设计以解决在学习期间发生的潜在和动态互连。该体系结构与并行单元和列交织,可实现HTM的高处理速度。

  空间集中器架构在XilinxZYNQ-7上合成,MNIST的分类精度为91.16%,EUNF的精度为90%,具有噪声。对于时间记忆序列预测,对于从EUNF数据集生成的5个数字长序列观察一阶和二阶预测,并且获得95%的准确度。

​  此外,所提出的硬件架构提供了比软件实现快1364倍的速度。这些结果表明,所提出的架构可以作为数字核心,在硬件中构建HTM,最终作为独立的自学系统。针对两个不同的数据集验证了所提出的架构:MNIST和车牌字体(EUNF),存在和不存在噪声。(欢迎转载分享)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值