ensemble and stack

本文介绍了集成学习中的Stacking算法原理及其应用实例。通过多个基学习器进行预测,并利用元学习器对这些预测进行组合,以提高整体模型的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KAGGLE ENSEMBLING GUIDE

https://www.cnblogs.com/zhizhan/p/5051881.html


Ensemble_learning 集成学习算法 stacking 算法

https://www.cnblogs.com/zhizhan/p/5051881.html

Traceback (most recent call last): File "C:\pythonwork\NBeats-M4-master\NBeats-M4-master\nbeats-test.sync.py", line 195, in <module> ensemble_member(freq,lookback,loss,model_type="generic") File "C:\pythonwork\NBeats-M4-master\NBeats-M4-master\nbeats-test.sync.py", line 104, in ensemble_member tuner = kt.RandomSearch( File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras_tuner\src\tuners\randomsearch.py", line 174, in __init__ super().__init__(oracle, hypermodel, **kwargs) File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras_tuner\src\engine\tuner.py", line 122, in __init__ super().__init__( File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras_tuner\src\engine\base_tuner.py", line 132, in __init__ self._populate_initial_space() File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras_tuner\src\engine\base_tuner.py", line 192, in _populate_initial_space self._activate_all_conditions() File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras_tuner\src\engine\base_tuner.py", line 149, in _activate_all_conditions self.hypermodel.build(hp) File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras_tuner\src\engine\hypermodel.py", line 120, in _build_wrapper return self._build(hp, *args, **kwargs) File "C:\pythonwork\NBeats-M4-master\NBeats-M4-master\hypernbeat.py", line 136, in build net=_create_model() File "C:\pythonwork\NBeats-M4-master\NBeats-M4-master\hypernbeat.py", line 103, in _create_model net = NBeatsNet( File "C:\pythonwork\NBeats-M4-master\NBeats-M4-master\model.py", line 92, in __init__ backcast, forecast = self.create_block(x_, e_, stack_id, block_id, stack_type, nb_poly,layer_size) File "C:\pythonwork\NBeats-M4-master\NBeats-M4-master\model.py", line 161, in create_block d1 = reg(Dense(units, activation='relu', name=n('d1'))) File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras\src\layers\core\dense.py", line 87, in __init__ super().__init__(activity_regularizer=activity_regularizer, **kwargs) File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras\src\layers\layer.py", line 271, in __init__ Operation.__init__(self, dtype=dtype, name=name) File "C:\Users\27954\anaconda3\envs\tf_env\lib\site-packages\keras\src\ops\operation.py", line 21, in __init__ raise ValueError( ValueError: Argument `name` must be a string and cannot contain character `/`. Received: name=0/0/generic/d1 (of type <class 'str'>)
最新发布
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值