《Qt5.9.7 OpenCV 人脸识别》之OpenCV侦测识别人脸

本文详细介绍了如何在Qt5.9.7环境下利用OpenCV进行人脸识别,包括拷贝训练文件、使用CascadeClassifier进行人脸检测、显示检测结果等步骤,并附上了效果展示及源码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:接上篇《Qt5.9.7 OpenCV 人脸识别》之OpenCV显示摄像头图像

1 拷贝OpenCV自己的训练文件

OpenCV的训练文件针对不同场景提供了不同的xml格式训练文件,方便分类器使用,这里采用其中的主要以人脸为主的训练文件haarcascade_frontalface_alt2.xml。

将上上节编译好的构建目录build\install\etc\haarcascades 下的haarcascade_frontalface_alt2.xml文件拷贝到程序执行文件目录。

2 使用级联分类器CascadeClassifier

OpenCV老版本使用CvHaarClassifierCascade函数,老版本的分类器只支持类Haar特征。3.4.5版本是新版本,可以使用CascadeClassifier类训练人脸检测器,CascadeClassifier既可以使用Haar,也可以使用LBP特征。

2.1 创建分类器对象,定义分类器加载成功标识

    CascadeClassifier m_ccf;    //创建分类器对象
    bool m_isClassifierLoaded;  //分类器加载成功标识

2.2 分类器加载训练文件

定义训练文件

const std::string xmlPath = "haarcascade_frontalface_alt2.xml";

程序启动加载训练文件

m_isClassifierLoaded = m_ccf.load(xmlPath);   //加载训练文件

3 检测人脸

void MainWindow::imageShow(const Mat &img, QLabel *label)
{
    if(m_isClassifierLoaded)   //加载训练文件已成功
    {
        std::vector<Rect> faces;  //创建一个容器保存检测出来的脸
        Mat gray;

        cvtColor(img,gray,CV_BGR2GRAY); //转换成灰度图,因为harr特征从灰度图中提取

        equalizeHist(gray,gray);  //直方图均衡行

        m_ccf.detectMultiScale(gray,faces,1.1,2,0|CV_HAAR_SCALE_IMAGE, Size(30, 30)); //检测人脸

        //画方框
        for( int i = 0; i < faces.size(); i++ ){
            Point centera( faces[i].x, faces[i].y);
            Point centerb( faces[i].x + faces[i].width, faces[i].y + faces[i].height );
            rectangle(img,centera,centerb,Scalar(255,0,0));

        }
    }

    image = mat2QImage(img);
    image = image.mirrored(true, false);    //将图像水平镜像
    label->setPixmap(QPixmap::fromImage(image));
}

4 效果图

5 程序源码

程序源码:https://gitee.com/wangzhenglin/facedetection

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值