Java 游戏改编

有一些Java Slick2D游戏编程的经验,用起来比较顺手,所以这个有游戏就用Java编写吧。 


首先说一下游戏的思路: 算是改编与俄罗斯方块,但事实上与俄罗斯方块还是有很大不同。具体来书就是游戏上方会像俄罗斯方块那样不停地落下不同形状的“积木”, 下方有一个小木板,玩家的任务就是在规定时间内,用木板尽量接住更多的“积木”。 


难点(强调):在木板接住“积木”之后,积木和木板并非一个整体, 这意味着随着木板的移动,木板上的积木有可能会落下来。 并且从上方落下来的会与下方的木板发生碰撞,这里也有可能回使上方的积木落下来。这里的collision detection是非常关键的。


下面是游戏的一些截图:




基本介绍:

1、 左上方第一个数字(19.56)代表的是玩家所获得积分。 玩家的木板上有越多的积木, 积分也会越多。 

2、 左上方第二个数字(3)代表的是游戏的时间限制,总时间约30秒。

3、 中间黑色的是木板, 上方会有积木落下。 

4、 在时间耗尽之后,板上的积木越多,玩家的积分也就会越多。



这是游戏结束画面。

1. 最后游戏会显示玩家的最终分数(以最后玩家接到的木板数量为准)。 

2. 另外会有一个play again的button, 点了之后便可以重新开始游戏。


好了,令人激动的时刻到了,下面我们来说实现。虽然游戏看起来十分简单,但还是牵涉到了比较复杂的方面。这里最难的便是Collision Detection. 木板和积木的碰撞,积木之间的碰撞,都算是难点了。 


为了比较好的实现游戏中的碰撞, 我决定使用Java的一个物理引擎: JBox2D.  

有兴趣的同学可以看看教程: 

http://www.jbox2d.org/

是非常不错的模型。


private World world;
public final Body body;

World在JBox2D中负责管理所有的物理实体及其动态模拟。

JBox中有一个Body class, 代表一个刚体,大家应该物理学过哈,也就是在任何力的作用下,体积形状都不改变。


private FallingBlock(World world, GroupLayer groupLayer) {
		FixtureDef fixtureDef = new FixtureDef();
		BodyDef bodyDef = new BodyDef();
		bodyDef.type = BodyType.DYNAMIC;
		body = world.createBody(bodyDef);

		float width = (int) (random() * MAX_BLOCK_DIMENSION) + 1;
		float height = MAX_BLOCK_DIMENSION + 1 - width;

		PolygonShape polygonShape = new PolygonShape();
		polygonShape.setAsBox(width / 2, height / 2);
		fixtureDef.shape = polygonShape;
		fixtureDef.density = 10.0f;
		fixtureDef.friction = 1.0f;
		fixtureDef.restitution = 0.0f;
		body.createFixture(fixtureDef);
		float angle = 0f;
		float startingX = random() * (MAX_STARTING_X - MIN_STARTING_X)
				+ MIN_STARTING_X;
		body.setTransform(new Vec2(startingX, 0), angle);

		SurfaceImage image = graphics().createSurface(width, height);
		image.surface().setFillColor(Pallette.random().color);
		image.surface().fillRect(0, 0, image.width(), image.height());
		layer = graphics().createImageLayer(image);
		layer.setOrigin(image.width() / 2, image.height() / 2);
		groupLayer.add(layer);

		log().debug("size: " + width + " by " + height);
	}

	public void update(int deltaMS) {
		Vec2 droppingObjectPos = body.getPosition();
		layer.setTranslation(droppingObjectPos.x, droppingObjectPos.y);
		layer.setRotation(body.getAngle());
	}
}

这里就是比较核心的代码了, 上面的class定义“积木”, 下面的class更新积木的状态。

FixtureDef可以定义一个抽象的物理特性,包括形状,密度,摩擦系数,这个概念用在本游戏中更是尤为方便。 

上方大部分代码都是来定义积木的物理属性的。


Vec2自然是代表vector了,是一个2D向量,用来表示实时的位置变化。

  

body.getAngle()

这是为了得到物体的经过碰撞的角度偏移,也需要实时更新。


另外还有一种碰撞模型,就是用Rectangle class,  更新rec.intersects,.....

这种属于比较简单的碰撞,适用于比较简易的情况。 








另外一部分核心代码:

@Override
	public void update(int deltaMS) {
		score.update(deltaMS);
		timeLabel.text.update(score.toString());

		if (missedBlocks >= ALLOWED_MISSABLE_BLOCKS) {
			screens.remove(this);
			screens.push(new GameOverScreen(screens, score));
			return;
		}

		inputHandler.updateControlOf(playerBody);

		world.step(deltaMS / 1000f, 10, 10);

		msUntilNextBlock -= deltaMS;
		if (msUntilNextBlock <= 0) {
			msUntilNextBlock = MILLIS_BETWEEN_BLOCKS;
			FallingBlock block = FallingBlock.inWorld(world)
					.onLayer(worldLayer);
			blocks.add(block);
		}

		for (FallingBlock block : blocks) {
			block.update(deltaMS);
			if (block.layer.ty() > MISSED_Y_THRESHOLD) {
				missedBlocks++;
				updateRemainingBlocksLabelText();
				toRemove.add(block);
			}
		}
		while (!toRemove.isEmpty()) {
			FallingBlock blockToRemove = toRemove.remove(0);
			blocks.remove(blockToRemove);
			world.destroyBody(blockToRemove.body);
			worldLayer.remove(blockToRemove.layer);
		}

		Vec2 playerPos = playerBody.getPosition();
		playerLayer.setTranslation(playerPos.x, playerPos.y);
	}


这一部分则是游戏的主更新部分:

score.update(deltaMS);
timeLabel.text.update(score.toString());
更新分数和时间


inputHandler.updateControlOf(playerBody);
控制输入

if (msUntilNextBlock <= 0) {
			msUntilNextBlock = MILLIS_BETWEEN_BLOCKS;
			FallingBlock block = FallingBlock.inWorld(world)
					.onLayer(worldLayer);
			blocks.add(block);
		}
控制新的木块掉下来


这些都比较好理解吧。 


好了,这下游戏 算是说完了。

总结一下, 本文最主要的就是JBox2D物理引擎的使用了,用习惯了你就会觉得这在游戏开发中是个多么棒的帮手了。游戏开放很难并且充满了喜悦,但当你完成之后,即便是烂大街的游戏,你也会觉得是一件令人喜悦的事情。 


吴悠 

                                                                                                                                            和室友pair programming

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值