Compressive Sensing via Nonlocal Low-Rank Regularization论文总结

本文提出了一种非局部低秩正则化(NLR)方法用于压缩感知(CS)图像恢复,利用图像的自相似性和低秩特性。通过块匹配和低秩近似,优化问题采用非凸的log det(X)函数代替传统的核范数,以更好地逼近矩阵的秩。通过迭代奇异值阈值(SVT)求解低秩矩阵,进而重建图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract:

  In this paper, we propose a nonlocal low-rank regularization (NLR) approach toward exploiting structured sparsity and explore its application into CS of both photographic and MRI images. 

   We also propose the use of a nonconvex log det(X) as a smooth surrogate function for the rank instead of the convex nuclear norm .

I.Introduction:

    In this paper, we propose a unified (统一的)variational(变化的) framework for nonlocal low-rank regularization of CS recovery. 

   To exploit the nonlocal sparsity of natural or medical images, we propose to regularize the CS recovery by patch grouping and low-rank approximation. 

    Specifically, for each exemplar(标本) image patch we group a set of similar image patches to form a data matrix X. Since each patch contain similar structures, the rank of this data matrix is low implying a useful image prior. To more efficiently solve the problem of rank minimization, we propose to use the log det(X) as a smooth surrogate function for the rank (instead of using the convex nuclear norm), which lends itself to iterative singular-value thresholding. 

II. BACKGROUND

III. NONLOCAL LOW-RANK REGULARIZATION FOR CS RECOVERY

    The proposed regularization model consists of two components: patch groupingfor characterizing self-similarity of a signal and low-rank approximation for sparsity enforcement.

      所提出方法的基本假设是自相似性在我们的信号中是丰富的。可以发现大量的大小为  的相似块,在位置i,表示为,对于每个样本块,我们可以用K-近邻搜索得到一个局部窗口

                                         

 T是设定的阈值,Gi是这些相似块位置的集合。对于每个样本块可以得到一个数据矩阵=

的每一列表示一个和相似的块。

     因为存在噪声,所以将数据矩阵建模为=, Li  :the low-rank matrix ,Wi :the Gaussian noise matrix 

可以用如下优化问题来解决:

                         

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值