https://leetcode.com/problems/minimum-path-sum/description/
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
我用了三种是实现方式,在原来数组上计算是效率最高的,但这里有一个技巧,上就是从1,1开始计算,这样循环判断少一些。这个思路是排名第一的程序
/** * @param {number[][]} grid * @return {number} */ var minPathSum = function(grid) { //dianx xianx daishu n=grid.length; m=grid[0].length; var arr=[]; var result =0; if(n==1){ for(i=0;i<m;i++){ result+=grid[0][i]; } return result; } for(i=0;i<n;i++){ arr[i]=[]; for(j=0;j<m;j++){ if(i==0 && j==0){ arr[i][j]=grid[i][j]; continue; } if(i==0){ arr[i][j]=arr[i][j-1]+grid[i][j]; continue; } if(j==0){ arr[i][j]=arr[i-1][j]+grid[i][j]; continue; } arr[i][j]=Math.min(arr[i][j-1],arr[i-1][j])+grid[i][j]; } } return arr[n-1][m-1]; function search(i,j){ if(i==0 && j==0){ return grid[i][j]; } if(i==0){ result=0; for(p=0;p<=j;p++) result+=grid[0][p]; return result; } if(j==0){ result=0; for(p=0;p<=i;p++) result+=grid[p][j]; return result; } if(i != 0 && j!=0){ return Math.min(search(i-1,j)+grid[i][j],search(i,j-1)+grid[i][j]); } } return search(n-1,m-1); }; var minPathSum1 = function(grid) { n=grid.length; m=grid[0].length; for(i=0;i<n;i++){ for(j=0;j<m;j++){ if(i==0 && j==0){ continue; } if(i==0){ grid[i][j]+=grid[i][j-1]; continue; } if(j==0){ grid[i][j]+=grid[i-1][j]; continue; } if(i!=0 && j!=0){ grid[i][j]+=grid[i][j-1]>grid[i-1][j]?grid[i-1][j]:grid[i][j-1]; } } } return grid[n-1][m-1]; } //console.log(minPathSum([[0]])); //console.log(minPathSum([[1,2],[1,1]])); console.log(minPathSum1([[1,2],[1,1]]));

2072

被折叠的 条评论
为什么被折叠?



