- 精度
预测为positve的占所有预测为positive的比例。
Recall = t p t p + f n {\displaystyle {\text{Recall}}={\frac {tp}{tp+fn}}\,}
- 召回率
预测为positve的占实际positive的比例。
- 准确率
预测positive和negetive都正确的占所有样本的比例。
| True condition | ||||||
| Total population | Condition positive | Condition negative | Prevalence =
Σ Condition positive
/
Σ Total population
| Accuracy (ACC) =
Σ True positive + Σ True negative
/
Σ Total population
| ||
|
Predicted
condition
|
Predicted condition
positive
| Positive predictive value (PPV), Precision =
Σ True positive
/
Σ Predicted condition positive
| False discovery rate (FDR) =
Σ False positive
/
Σ Predicted condition positive
| |||
|
Predicted condition
negative
| True negative | False omission rate (FOR) =
Σ False negative
/
Σ Predicted condition negative
| Negative predictive value (NPV) =
Σ True negative
/
Σ Predicted condition negative
| |||
| True positive rate (TPR), Recall, Sensitivity, probability of detection =
Σ True positive
/
Σ Condition positive
| False positive rate (FPR), Fall-out, probability of false alarm =
Σ False positive
/
Σ Condition negative
| Positive likelihood ratio (LR+) =
TPR
/
FPR
| Diagnostic odds ratio (DOR) =
LR+
/
LR−
| F1 score =
2
/
1
/
Recall
+
1
/
Precision
| ||
| False negative rate (FNR), Miss rate =
Σ False negative
/
Σ Condition positive
| True negative rate (TNR), Specificity (SPC) =
Σ True negative
/
Σ Condition negative
| Negative likelihood ratio (LR−) =
FNR
/
TNR
| ||||
本文详细解释了在信息检索及机器学习中精确率(Precision)与召回率(Recall)的概念及其计算方法。精确率定义为预测为positive的样本中真正为positive的比例,而召回率则衡量了实际为positive的样本被正确预测的比例。此外,还介绍了准确率(Accuracy)、真阳性率(True Positive Rate, TPR)等关键指标。
1728

被折叠的 条评论
为什么被折叠?



