6、大型机开发:从Unix服务到IDE工具的全面指南

大型机开发与IDE工具指南

大型机开发:从Unix服务到IDE工具的全面指南

1. Unix系统服务

Unix操作系统的起源可以追溯到20世纪60年代中期,由麻省理工学院、贝尔实验室和通用电气共同创造。起初,Unix是为通用电气的大型机设计的,但随着时间的推移,它的应用迅速传播开来。IBM也将其采用到自己的大型机平台上,Unix可以与z/OS一起使用,这对于有丰富Unix经验的企业来说是一个很大的卖点。此外,它还能与CICS、IMS、Db2、SAP R/3、Oracle HTTP Server和MQ等系统无缝集成。

不过,Unix有一个分层文件系统。在依赖分区数据集(PDS)的大型机上,该如何管理呢?IBM首先创建了分层文件系统(HFS),这是一个不错的初始版本,但后来的zSeries文件系统(zFS)则更为优越。

2. 大型机工具

许多工具和软件包可以帮助进行大型机开发,以下是一些广泛使用的工具:
| 工具名称 | 功能描述 |
| — | — |
| DFSORT和Syncsort | IBM和Precisely的复杂工具,用于数据排序、合并、复制和分析 |
| BMC Compuware Abend - AID | 可识别、解决和跟踪应用程序和系统异常终止 |
| BMC Compuware File - AID | 帮助跨平台管理文件和数据 |
| BMC Compuware Xpediter | 包含用于COBOL、PL/I、C和汇编程序应用的调试器和交互式分析工具 |
| CA Easytrieve Report Generator | 博通的数据管理系统,基于类英语语言,可在大型机、Unix、Linu

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测与分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值