分数阶微分方程相关研究
1. 脉冲分数阶微分方程问题
在脉冲分数阶微分方程的研究中,通过分析$T (1,x0)(V )(t) = T(V )$的等度连续性,可知$G(t, s)φ(s, co{T(V )(s), x0}, ψco{T(V )(s), x0}$和$ϕco{T(V )(s), x0})$是等度连续的。由此可得:
$\beta(T (2,x0)(V )(t)) = \beta(Tco{T (1,x0)(V )(t), x0})$
$\leq|\ Mα|\max(1, bζ1, bζ2)B(T(V ))$
$\left(
\frac{br}{\Gamma(r + 1)} + \frac{1}{b} (\frac{\mu}{\delta} + b)
\right)$
$\left(
\frac{br}{\Gamma(r + 1)} + \frac{\mu}{\delta} \frac{br−1}{\Gamma(r)}
+ mT\frac{br}{\Gamma(r + 1)} + mT(\frac{\mu}{\delta} + b) \frac{br−1}{\Gamma(r)}
\right)$
$+ mT\frac{br}{\Gamma(r + 1)} + mT^2 \frac{br−1}{\Gamma(r)}
\leq
\left(
|\ Mα|\max(1, bζ1, bζ2) \frac{b∗}{\Gamma(r)}
\left(
(m + 1)(\frac{\mu}{\delta})^2 + (3m + 2)\frac{\mu}{\delta} + 4m +
超级会员免费看
订阅专栏 解锁全文
240

被折叠的 条评论
为什么被折叠?



