orcl Index base

本文详细介绍了数据库中的三种索引类型:聚簇索引、B-tree索引和位图索引。其中,B-tree索引是最常用的类型,适用于大多数场景;聚簇索引较少使用;位图索引适用于大量相同值的列,如类别或部门ID。
1. 聚簇索引
2. B-tree索引
3. 位图索引 



---------------------------
聚簇索引 - 少用
--建立簇
create cluster test_clst(t_c varchar2(20)) ;
--为簇加索引
create index cin on cluster test_clst;
--为表增加
create table t (
id varchar2(20),
name varchar2(20)
)
cluster test_clst(id);
--------------------------- 
B-tree索引 - 常用
 

 
典型的树形结构,自上而下递减,自左向右递增。
 create index <name> on table_name(column_names split by ','|desc/asc);
 alter table table_name add index index_name(column_names split by ','|desc/asc) ;
--------------------------- 
位图索引
 我们目前大量使用的索引一般主要是B*Tree索引,在索引结构中存储着键值和键值的RowID,并且是一一对应的.

而位图索引主要针对大量相同值的列而创建(例如:类别,操作员,部门ID,库房ID等),索引块的一个索引行中存储键值和起止Rowid,以及这些键值的位置编码,位置编码中的每一位表示键值对应的数据行的有无.一个位图索引块可能指向的是几十甚至成百上千行数据的位置.
create bitmap index index_name(column_names split by ','|desc/asc) ; 

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值