在WebRTC上实现ML Kit笑容检测

本文介绍了如何在WebRTC通话中使用Google的ML Kit实现笑容检测,探讨了检测准确率、延时和CPU占用率的平衡,展示了在RTC中应用ML Kit的实现过程和性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

640?wx_fmt=jpeg


本文来自Houseparty的WebRTC视频专家Gustavo Garcia Bernardo和TokBox的WebRTC移动端专家Roberto Perez,他们通过Google的ML Kit在WebRTC通话中实现了简单的笑容检测,期间考虑到了检测准确率、延时以及检测频度与CPU占用率的平衡等,实际结果表明ML Kit的检测结果令人满意。LiveVideoStack对本文进行了摘译。


文 / Roberto Perez, Gustavo Garcia

译 / 元宝

原文 : https://webrtchacks.com/ml-kit-smile-detection/


现在,在大部分时间里建立视频通话变得相对简单,我们可以继续使用视频流做一些有趣的事情。随着机器学习(ML)的新进展以及越来越多的API和库的出现,计算机视觉也变得越来越容易。Google的ML Kit是最近提出的一个新的基于机器学习的库,可以快速访问计算机视觉输出。


为了展示如何使用Google的新ML KIT来检测实时WebRTC流上用户的笑容,我想欢迎过去Houseparty的WebRTC视频大师Gustavo Garcia Bernardo。与此同时欢迎TokBox的移动WebRTC专家Roberto Perez。他们给出了一些关于做面部检测的背景知识,展示了一些代码示例,但更重要的是分享了他们实现实时通信(RTC)应用程序内的微笑检测的最佳配置的研究。

  

介绍


在实时通信(RTC)中最常见的机器学习(的例子是计算机视觉。然而,除了使用人脸检测进行识别、跟踪和增强之外,我们还没有看到这些算法的许多实际应用。 幸运地是两周前Houseparty首席执行官Ben Rubin发表的一则让我们有机会探索人造视觉用例的评论:


“若有人可以做一个来检测笑脸的编外项目,以便让我们可以开始测量笑容并在仪表板上显示。 我认为这在许多不同的层面上都很重要。”


几乎与此同时,Google发布了他们用于机器学习的新的跨平台移动SDK,名为ML Kit。 我们想要立即测试这个。 幸运地是,所有的行星都可以让我们在一个真正的应用上尝试一下,即:在WebRTC对话中,在iPhone本地上通过ML检测笑容。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值