最大子列和问题
给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1≤i≤j≤K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
- 数据1:与样例等价,测试基本正确性;
- 数据2:102个随机整数;
- 数据3:103个随机整数;
- 数据4:104个随机整数;
- 数据5:105个随机整数;
输入格式:
输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。
输出格式:
在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。
输入样例:
6
-2 11 -4 13 -5 -2
输出样例:
20
算法实现:
/*
最大子列和问题
*/
#include<iostream>
#include<cstdlib>
using namespace std;
//算法1:暴力列举
//复杂度为O(n^3)
int max_subseq1(int n, const int *data_)
{
int curr_num=0;
int max_num = 0;
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n - i; j++)
{
curr_num = 0;
for (int m = 0; m <=j; m++)
{
curr_num = curr_num + data_[i+m];
}
if (curr_num > max_num)
{
max_num = curr_num;
}
}
}
return max_num;
}
//算法2:暴力列举的改进
//把复杂度降为O(n^2)
int max_subseq2(int n, const int *data_)
{
int curr_num = 0;
int max_num = 0;
for (int i = 0; i < n; i++)
{
curr_num = data_[i];
for (int j = 1; j <= n - i; j++)
{
//针对算法1的改进
//有些元素在列举过程中重复加了
if (curr_num > max_num)
{
max_num = curr_num;
}
curr_num+= data_[i+j];
}
}
return max_num;
}
//算法3 :在线法
//复杂度为O(n)
int max_subseq3(int n, const int *data_)
{
int curr_num = 0;
int max_num = 0;
for (int i = 0; i < n; i++)
{
curr_num += data_[i];
if (curr_num < 0)
{
curr_num = 0;
}
if (curr_num > max_num)
{
max_num = curr_num;
}
}
return max_num;
}
//把算法3封装成一个类
//使其可以输出最大子列和 以及该子列的第一个元素和最后一个元素
class Max_subseq3
{
public:
int data_num;
int *data;
int max_num;//输出最大子列和
int head_num, tail_num;//输出最大子列的头元素和尾元素
Max_subseq3();
Max_subseq3(int data_num_, int *data_)
{
data_num = data_num_;
data = data_;
}
void find_subseq()//子列寻找成员函数
{
max_num = 0;
int curr_num = 0;
head_num = data[0];
int m = 0;
for (int i = 0; i < data_num; i++)
{
curr_num += data[i];
if (curr_num < 0)
{
curr_num = 0;
m = 0;
}
if (curr_num > max_num)
{
max_num = curr_num;
head_num = data[i - m];
tail_num = data[i+1];
}
m++;
}
}
};
int main()
{
int n;
int seq_num;
cin >> n;
int *data = new int[n];
for (int i = 0; i < n; i++)
{
cin >> seq_num;
data[i] = seq_num;
}
Max_subseq3 find_seq(n, data);
find_seq.find_subseq();
cout <<"算法1输出结果为"<< max_subseq1(n, data) << endl;
cout << "算法2输出结果为" << max_subseq2(n, data) << endl;
cout << "算法3输出结果为" << max_subseq3(n, data) << endl;
cout << "算法3输出结果为" << find_seq.max_num<<" "<<find_seq.head_num<<" "<<find_seq.tail_num<< endl;
system("pause");
return 0;
}