PAT 1127 ZigZagging on a Tree

本文介绍了一种使用C++实现的二叉树层序遍历算法,并通过输入中序和后序遍历结果来构建二叉树。特别地,文章详细展示了如何递归地构建每一层的左右子树,并按层级输出节点值。

在这里插入图片描述
在这里插入图片描述
题解:
在这里插入图片描述

代码:

#include<iostream>
#include<vector>
using namespace std;
const int maxv=39;
vector<int> tree[maxv];
int in[maxv],post[maxv];
int layer=1;
void layertravel(int postL,int postR,int inL,int inR,int nowlayer){
	if(layer<nowlayer) layer=nowlayer;
	if(postL>=postR) return;
	int k=inL;
	while(in[k]!=post[postR]) k++;
	int numL=k-inL;
	if(numL!=0){
	tree[nowlayer+1].push_back(post[postL+numL-1]); //左子节点
//	cout<<nowlayer+1<<": "<<post[postL+numL-1]<<endl;
	layertravel(postL,postL+numL-1,inL,k-1,nowlayer+1);//层序遍历左子树
    }
    if(postL+numL!=postR){
    	tree[nowlayer+1].push_back(post[postR-1]); //右子节点
    //	cout<<nowlayer+1<<": "<<post[postR-1]<<endl;
    	layertravel(postL+numL,postR-1,k+1,inR,nowlayer+1);//层序遍历左子树
	}
	 
}
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++) cin>>in[i];
	for(int i=1;i<=n;i++) cin>>post[i];
	tree[1].push_back(post[n]);
	layertravel(1,n,1,n,1);
	for(int i=1;i<layer;i++){
		if(i%2==0){
			for(int j=0;j<tree[i].size();j++)
			cout<<tree[i][j]<<" ";
			
		}
		else{
			for(int j=tree[i].size()-1;j>=0;j--)
			cout<<tree[i][j]<<" ";
		}
	}
	//cout<<endl;
//	cout<<tree[layer].size()<<endl;
	if(layer%2==0){
		for(int i=0;i<tree[layer].size();i++) printf("%d%s",tree[layer][i],i==tree[layer].size()-1?"\n":" ");
	}
	else{
		for(int i=tree[layer].size()-1;i>=0;i--) printf("%d%s",tree[layer][i],i==0?"\n":" ");
	}
	return 0;
}

在第一次构建代码之前一定要想清楚再想清楚,不然会因为小错误及一些漏掉的地方浪费巨多时间。

<think>好的,用户想了解二叉树的Z字形遍历算法实现。首先,我需要回忆一下什么是Z字形遍历。记得这是层序遍历的变种,每层交替改变方向,比如第一层从左到右,第二层从右到左,依此类推。根据用户提供的引用,特别是引用[2]中提到的问题解析,Z字遍历的实质是按层访问,一行正向一行反向。 接下来,我需要考虑如何实现这个算法。通常层序遍历使用队列,但这里需要每层改变方向,可能需要记录当前层数或者使用双端队列来调整添加节点的顺序。引用[4]提到在BFS中,左到右遍历时用FIFO,添加到队尾;右到左时用FILO,添加到队头。这提示可以使用双端队列,或者普通队列配合标记方向,并在处理每层时根据方向决定如何处理节点。 然后,我需要考虑具体步骤。初始化队列,加入根节点。然后循环处理每一层,记录当前层的大小。根据当前层的方向,决定是正序还是逆序保存结果。同时,在遍历下一层节点时,可能需要调整子节点的添加顺序,比如在右到左时,先右子节点再左子节点,但这样可能会影响下一层的处理顺序。或者,保持正常的子节点添加顺序,但在保存结果时反转当前层的列表。 根据引用[4]的实现方法,他们可能在右到左时,将子节点插入队列头部,这样下一层处理时会先访问这些节点。不过这样可能会改变队列的FIFO特性,需要仔细处理。另一种方法是正常处理队列,但在收集完当前层的节点值后,根据层数的奇偶性决定是否反转该层的列表。 例如,使用一个布尔变量标记是否需要反转,初始为False(第一层不需要反转)。处理完每一层后,切换这个布尔值。然后在收集节点值时,如果是偶数层(比如第二层),则反转该层的列表。这种方法实现起来比较简单,不需要改变队列的结构,只需在保存结果时处理。 然后,代码实现方面,可以用队列进行BFS,维护一个结果列表。每次处理一层节点,将它们的值存入临时列表,根据当前层的方向决定是否反转,然后将该临时列表加入结果。同时,将子节点按正常顺序加入队列,这样下一层的处理顺序不会被打乱,只是保存时反转即可。 这样实现的好处是代码逻辑清晰,容易理解,且不需要复杂的队列操作。例如,在Python中,可以用deque来实现队列,每层处理时记录当前层的节点数,循环取出节点,收集子节点,然后根据层数的奇偶性决定是否反转当前层的值列表。 现在,需要考虑是否需要处理空树的情况,即根节点为空时直接返回空列表。同时,循环中逐层处理,直到队列为空。 最后,编写示例代码,并确保符合用户提到的格式要求,如行内公式用$...$,独立公式用$$...$$。可能还需要解释时间复杂度,比如O(n),空间复杂度O(n)等。 总结,Z字形遍历的关键点在于层序遍历的基础上,每隔一层反转结果。实现时可以使用BFS,配合方向标记,决定是否反转当前层的节点值列表。</think>二叉树的Z字形层序遍历(Zigzag Level Order Traversal)是一种在每层交替改变遍历方向的算法。其核心思想基于广度优先搜索(BFS),通过队列和方向控制实现[^2][^4]。 ### 算法实现步骤 1. **初始化队列**:将根节点加入队列,并设置方向标志`left_to_right`为`True`(表示第一层从左到右) 2. **逐层遍历**: - 记录当前层的节点数量`level_size` - 用临时列表存储当前层节点的值 3. **处理节点**: - 根据方向标志决定节点值的存储顺序 - 将子节点按正常顺序(左→右)加入队列 4. **方向切换**:每层处理完成后翻转方向标志 5. **时间复杂度**:$O(n)$,其中$n$为节点数 ### Python代码示例 ```python from collections import deque class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def zigzagLevelOrder(root: TreeNode) -> list[list[int]]: if not root: return [] result = [] queue = deque([root]) left_to_right = True # 方向控制标志 while queue: level_size = len(queue) current_level = deque() # 使用双端队列优化插入效率 for _ in range(level_size): node = queue.popleft() # 根据方向选择插入位置 if left_to_right: current_level.append(node.val) else: current_level.appendleft(node.val) # 按正常顺序添加子节点 if node.left: queue.append(node.left) if node.right: queue.append(node.right) result.append(list(current_level)) left_to_right = not left_to_right # 切换方向 return result ``` ### 关键点说明 1. **双端队列优化**:使用`deque`的左右插入操作使时间复杂度保持在$O(n)$ 2. **子节点处理顺序**:始终保持子节点按左→右顺序入队,仅改变当前层值的存储顺序 3. **方向控制逻辑**:通过布尔值`left_to_right`实现交替方向控制 $$ \text{空间复杂度} = O(n) \quad \text{(队列最大存储量)} $$
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值