PAT1150 Travelling Salesman Problem

本文介绍了一种解决旅行商问题的方法,通过邻接矩阵存储城市间的距离,并利用vector存储路径信息,实现对给出路径集合中接近最优解的简单回路或回路的查找。

The “travelling salesman problem” asks the following question: “Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?” It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from “https://en.wikipedia.org/wiki/Travelling_salesman_problem”.)

In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

n C
​1
​​ C
​2
​​ … C
​n
​​

where n is the number of cities in the list, and C
​i
​​ 's are the cities on a path.

Output Specification:
For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

TS simple cycle if it is a simple cycle that visits every city;
TS cycle if it is a cycle that visits every city, but not a simple cycle;
Not a TS cycle if it is NOT a cycle that visits every city.
Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

在这里插入图片描述
题解:
用邻接矩阵存储图信息。再用一个vector来存储路径信息,通过循环来一步步遍历图,同时用一个变量存储路径长度和最小路径长度。用set数组存储遍历过的点,若最后遍历的点数目不对则输出错误。

刚开始我的代码和后面一致,只是把vector数组放在了函数外:
输出一致但答案全错。
在这里插入图片描述

后来我将vector数组放进了函数里:

#include<iostream>
#include<set> 
#include<vector>
using namespace std;
const int maxv=209,INF=1000000000;
int G[maxv][maxv];
int mindis=INF,minindex=-1;
int n;
void travel(int index){
	int num;
	cin>>num;
	int nowdis=0;
	set<int> s;
	vector<int> dis(num);
	for(int i=0;i<num;i++) cin>>dis[i];
	s.insert(dis[0]);
	int i;
	for(i=1;i<dis.size();i++){
		if(G[dis[i-1]][dis[i]]==0){
			printf("Path %d: NA (Not a TS cycle)\n",index);
			return;
		}
		else{
			nowdis+=G[dis[i-1]][dis[i]];
			s.insert(dis[i]);
		}
	}
	if(s.size()==n&&dis[0]==dis[dis.size()-1]){
		if(nowdis<mindis){
			mindis=nowdis;
			minindex=index;
		} 
		if(dis.size()==n+1){
			printf("Path %d: %d (TS simple cycle)\n",index,nowdis);
			return;
		}
		else if(dis.size()>n+1){
			printf("Path %d: %d (TS cycle)\n",index,nowdis);
			return;
		}	
	}
	else{
		printf("Path %d: %d (Not a TS cycle)\n",index,nowdis);
		return;
	}
}
int main(){
	int  num,k,m;
	cin>>n>>m;
	int v1,v2,w;
	while(m--){
		cin>>v1>>v2>>w;
		G[v1][v2]=G[v2][v1]=w;
	}
	cin>>k;
	for(int i=1;i<=k;i++) travel(i);
	printf("Shortest Dist(%d) = %d\n",minindex,mindis);
	return 0;
}

在这里插入图片描述
但是这样又是可以的,暂时没找到问题的原因,但估计是和vector存储方式等相关

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值