深度学习:Keras与TensorFlow实战及卷积神经网络入门
1. 使用Keras进行建模
1.1 调整学习率
在使用Keras进行建模时,我们可以通过一系列操作来调整学习率。以下是具体的代码实现:
set.seed(1)
model <- keras_model_sequential() %>%
layer_dense(units = 175,
activation = "relu", input_shape = 2,
kernel_regularizer = regularizer_l2(0.001)) %>%
layer_batch_normalization() %>%
layer_dropout(rate = 0.2) %>%
layer_dense(units = 1, activation = 'sigmoid') %>%
compile(
optimizer = optimizer_adam(),
loss = 'binary_crossentropy',
metrics = 'accuracy'
)
learn <- model %>% fit((scale.trainX.mat), trainY,
epochs = 300,
batch_size = 64,
validation_split = 0.2,
Keras与TensorFlow深度学习实战
超级会员免费看
订阅专栏 解锁全文
3133

被折叠的 条评论
为什么被折叠?



