matlab模拟退火算法(SA)详解(一)算法入门

在许多实际优化问题中,存在许多局部最优解,随着优化问题规模的增大,局部最优解的数量快速增加。

寻找全局最优解可分为两类:

1.确定性方法,常用于求解有一些特殊特征的问题

2.随机搜索方法,(梯度下降法)则沿着目标函数下降的方法搜索,但是常常会陷入局部最小值,而非全局最优解。

模拟退火算法是一种通用概率算法,用来在一个大的搜寻空间内寻找问题的最优解。美国物理学家 N.Metropolis 和同仁在1953年发表研究复杂系统、计算其中能量分布的文章,他们使用蒙特卡罗模拟法计算多分子系统中分子的能量分布。现代模拟退火算法形成于20世纪80年代初,在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

模拟退火算法(Simulated Annealing,简称SA)的思想最早是由Metropolis等提出的。其出发点是基于物理中固体物质的退火过程与一般的组合优化问题之间的相似性。模拟退火法是一种通用的优化算法,其物理退火过程由以下三部分组成:

1.加温过程。其目的是增强粒子的热运动,使其偏离平衡位置。当温度足够高时,固体将熔为液体,从而消除系统原先存在的非均匀状态。

2.等温过程。对于与周围环境交换热量而温度不变的封闭系统,系统状态的自发变化总是朝自由能减少的方向进行的,当自由能达到最小时,系统达到平衡状态。

3.冷却过程。使粒子热运动减弱,系统能量下降,得到晶体结构。

加温过程相当于对算法设定初值,等温过程对应算法的Metropolis抽样过程,冷却过程对应控制参数的下降。这里能量的变化就是目标函数,我们要得到的最优解

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值