遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解(所找到的解是全局最优解)的方法。
参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
1)种群初始化。我们需要首先通过随机生成的方式来创造一个种群,一般该种群的数量为100~500,这里我们采用二进制将一个染色体(解)编码为基因型。随后用进制转化,将二进制的基因型转化成十进制的表现型。
2)适应度计算(种群评估)。这里我们直接将目标函数值作为个体的适应度。
3)选择(复制)操作。根据种群中个体的适应度大小,通过轮盘赌等方式将适应度高的个体从当前种群中选择出来。其中轮盘赌即是与适应度成正比的概率来确定各个个体遗传到下一代群体中的数量。
具体步骤如下:
(1)首先计算出所有个体的适应度总和Σfi。
(2)其次计算出每个个体的相对适应度大小fi/Σfi,类似于softmax。
(3)再产生一个0到1之间的随机数,依据随机数出现在上述哪个概率区域内来确定各个个体被选中的次数。
4)交叉(交配)运算。该步骤是遗传算法中产生新的个体的主要操作过程,它用一定的交配概率阈值(pc,一般是0.4到0.99)来控制是否采取单点交叉,多点交叉等方式生成新的交叉个体。
具体步骤如下:
(1)先对群体随机配对。
(2)再随机设定交叉点的位置。