本文列举了一些提升或加速日常数据分析工作的技巧,包括:
1. Pandas Profiling
2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据
3. IPython 魔术命令
4. Jupyter 中的格式编排
5. Jupyter 快捷键
6. 在 Jupyter(或 IPython)中使一个单元同时有多个输出
7. 为 Jupyter Notebook 即时创建幻灯片
1. Pandas Profiling
该工具效果明显。下图展示了调用 df.profile_report() 这一简单方法的结果
使用该工具只需安装和导入 Pandas Profiling 包。
本文不再详述这一工具,如欲了解更多,请阅读:https://towardsdatascience.com/exploring-your-data-with-just-1-line-of-python-4b35ce21a82d
2. 使用 Cufflinks 和 Plotly 绘制 Pandas 数据
「经验丰富的」数据科学家或数据分析师大多对 matplotlib 和 pandas 很熟悉。也就是说,你只需调用 .plot() 方法,即可快速绘制简单的 pd.DataFrame 或 pd.Series:
有点无聊?
这已经很好了,不过是否可以绘制一个交互式、可缩放、可扩展的全景图呢?是时候让 Cufflinks* *出马了!(Cufflinks 基于 Plotly 做了进一步的包装。)
在环境中安装 Cufflinks,只需在终端中运行! pip install cufflinks --upgrade 即可。查看下图:
效果好多了!
注意,上图唯一改变的是 Cufflinks cf.go_offline() 的导入和设置,它将 .plot() 方法变为 .iplot()。
其他方法如 .scatter_matrix() 也可以提供非常棒的