Windows下pytorch读取数据出现Broken pipe

在Windows上使用PyTorch进行深度学习训练时遇到RuntimeError,错误源于尝试在当前进程初始化阶段启动新进程。解决方案是将数据加载器的num_workers参数设置为0,避免在Windows系统中使用多线程读取数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows下pytorch读取数据出现Broken pipe

完整错误:

RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.

    This probably means that you are not using fork to start your
    child processes and you have forgotten to use the proper idiom
    in the main module:

        if __name__ == '__main__':
            freeze_support()
            ...

    The "freeze_support()" line can be omitted if the program
    is not going to be frozen to produce an executable.

Traceback (most recent call last):
File “H:\Desktop\PythonCode\ModelDeploy\pytorch-slimming-master\main.py”, line 160, in
train(epoch)
File “H:\Desktop\PythonCode\ModelDeploy\pytorch-slimming-master\main.py”, line 114, in train
for batch_idx, (data, target) in enumerate(train_loader):
File “F:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py”, line 291, in iter
return _MultiProcessingDataLoaderIter(self)
File “F:\Anaconda3\lib\site-packages\torch\utils\data\dataloader.py”, line 737, in init
w.start()
File “F:\Anaconda3\lib\multiprocessing\process.py”, line 112, in start
self._popen = self._Popen(self)
File “F:\Anaconda3\lib\multiprocessing\context.py”, line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File “F:\Anaconda3\lib\multiprocessing\context.py”, line 322, in _Popen
return Popen(process_obj)
File “F:\Anaconda3\lib\multiprocessing\popen_spawn_win32.py”, line 89, in init
reduction.dump(process_obj, to_child)
File “F:\Anaconda3\lib\multiprocessing\reduction.py”, line 60, in dump
ForkingPickler(file, protocol).dump(obj)
BrokenPipeError: [Errno 32] Broken pipe

解决办法:

由于Windows系统下,pytorch还不支持多线程读取数据;因此需要把num_workers改为0.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值