第6章第5题
Suppose there are d items. We first choose
R=∑k=1d(dk)∑i=1d−k(d−ki)=∑k=1d(dk)(2d−k−1)=∑k=1d(dk)2d−k−∑k=1d(dk)=∑k=1d(dk)2d−k−[2d−1],
where
∑k=1d(ni)=2n−1.
Since
(1+x)d=∑i=1d(di)xd−i+xd,
substituting x=2 leads to:
3d=∑i=1d(di)2d−i+2d.
Therefore,the total number of rules is:
R=3d−2d−[2d−1]=3d−2d+1+1.

本文详细探讨了特定条件下规则的数量计算方法及其复杂度分析,通过数学推导揭示了规则总数与参数之间的关系,提供了深入理解规则生成过程的洞察。
1882

被折叠的 条评论
为什么被折叠?



