(论文+代码)R-FCN:基于区域的全卷积神经网络进行物体检测

提出了一种基于区域的全卷积网络R-FCN,该方法通过位置敏感得分图解决物体检测中的平移变化问题,并能高效准确地进行检测。在PASCAL VOC数据集上实现了83.6% mAP的精度,测试速度达到170ms每张图片。
部署运行你感兴趣的模型镜像

何恺明课题组目标检测最近工作《R-FCN: Object Detection via Region-based Fully Convolutional Networks》:

We present region-based, fully convolutional networks for accurate and efficient object detection. In contrast to previous region-based detectors such as Fast/Faster R-CNN that apply a costly per-region subnetwork hundreds of times, our region-based detector is fully convolutional with almost all computation shared on the entire image. To achieve this goal, we propose position-sensitive score maps to address a dilemma between translation-invariance in image classification and translation-variance in object detection. Our method can thus naturally adopt fully convolutional image classifier backbones, such as the latest Residual Networks (ResNets), for object detection. We show competitive results on the PASCAL VOC datasets (e.g., 83.6% mAP on the 2007 set) with the 101-layer ResNet. Meanwhile, our result is achieved at a test-time speed of 170ms per image, 2.5-20x faster than the Faster R-CNN counterpart. 


论文链接:

https://arxiv.org/abs/1605.06409


代码链接:

https://github.com/daijifeng001/r-fcn


原文链接:

http://weibo.com/5501429448/E2rppq970?from=page_1005055501429448_profile&wvr=6&mod=weibotime&type=comment#_rnd1470568573930

您可能感兴趣的与本文相关的镜像

AutoGPT

AutoGPT

AI应用

AutoGPT于2023年3月30日由游戏公司Significant Gravitas Ltd.的创始人Toran Bruce Richards发布,AutoGPT是一个AI agent(智能体),也是开源的应用程序,结合了GPT-4和GPT-3.5技术,给定自然语言的目标,它将尝试通过将其分解成子任务,并在自动循环中使用互联网和其他工具来实现这一目标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值