总线,设备,设备驱动

A bus is a channel between the processor and one or more devices. For the  purposes of the device model, all devices are connected via a bus, even if  it is an internal, virtual, "platform" bus. Buses can plug into each other.  A USB controller is usually a PCI device, for example. The device model  represents the actual connections between buses and the devices they control.  A bus is represented by the bus_type structure. It contains the name, the  default attributes, the bus' methods, PM operations, and the driver core's  private data.


 The device driver-model tracks all of the drivers known to the system.  The main reason for this tracking is to enable the driver core to match  up drivers with new devices. Once drivers are known objects within the  system, however, a number of other things become possible. Device drivers  can export information and configuration variables that are independent  of any specific device.


  At the lowest level, every device in a Linux system is represented by an instance of struct device. The device structure contains the information that the device model core needs to model the system. Most subsystems, however, track additional information about the devices they host. As a  result, it is rare for devices to be represented by bare device structures; instead, that structure, like kobject structures, is usually embedded within a higher-level representation of the device.


 platform_data: Platform data specific to the device.  Example: For devices on custom boards, as typical of embedded and SOC based hardware, Linux often uses platform_data to point to board-specific structures describing devices and how they  are wired.  That can include what ports are available, chip  variants, which GPIO pins act in what additional roles, and so  on.  This shrinks the "Board Support Packages" (BSPs) and  minimizes board-specific #ifdefs in drivers.

自己的一点点理解:

        对于linux系统驱动部分,分层概念用得很广泛,其实质就是类的继承,子类继承父类,子类在父类的基础上扩展各种功能,按扩展功能的不同,分别称称之为不同的子系统。核心的几个基类,如kobject, kset,ktype这三个类,被device,device_driver,bus继承。

        初始化的时候,一般都是初始化的核心基类,然后再初始化子系统,最后初始化具体的某个设备。


背光子系统

电源管理子系统

LED子系统


今天突然懂得了,设备和驱动分开的好处了,例如平台设备和平台驱动,对于同一平台设备,不同的硬件的开发板所提供的设备基地址或者其它资源不同,这些不同,可以在平台设备中体现;而平台驱动部分,则无需关心这部分的不同,或者做出的修改的部分很少很少。



【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,最终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性适应性的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值