1. Basic
wget http://code.compeng.uni-frankfurt.de/attachments/download/55/hpl-gpu-1.1.0.tar.bz2//HPL
wget http://code.compeng.uni-frankfurt.de/attachments/download/54/caldgemm-1.1.0.tar.bz2 //CALDGEMM
bzip2 -d *.tar.bz2
tar -xvf *.tar
http://code.compeng.uni-frankfurt.de/projects/hpl/wiki
make NO_MEMPOLICY=1 -j incur errors
gotoblas error undefined symbol prefetchsize ' in operation
gmake clean
gmake TARGET=NEHALEM NO_MEMPOLICY=1 -j
http://code.compeng.uni-frankfurt.de/projects/caldgemm/files
tar xzf *.tgz
-lpthread -ldl -L/usr/X11R6/lib -laticalrt -laticalcl -lgfortran ../GotoBLAS2/
/home/shir/download/AMD-APP-SDK-v2.7-RC-lnx64/lib/x86_64
grep HPL_CUSTOM_CALDGEMM_OPTIONS ./ -r
MV2_ENABLE_AFFINITY=0 MV2_RNDV_PROTOCOL=R3 MV2_USE_RDMA_ONE_SIDED=0
http://code.compeng.uni-frankfurt.de/projects/caldgemm/repository/entry/README
-------------------------------------------
-z (default: disabled)
Enable Multithreading. You definitely want to activate this
-c (default: disabled)
Use CPU for DGEMM. You can supply -g as well to use both CPU and GPU. Supplying neither of them will use GPU only.
-j <dbl> (default: -1)
Ratio of GPU performance to total CPU+GPU performance. Set to -1 for autodetection.
-s (default: disabled)
Dynamic CPU GPU scheduling. Do not use only the fixed ratio specified by -j but use a dynamic CPU/GPU workload scheduling. This includes work-stealing, etc. The value provided by -j is the basis for the scheduling.
-p (default: disabled)
Interleaving Memory Policy. Gotoblas usually activates memory interleaving. This leads to a problem with the CAL library. Interleaving should be activated after memory for the CAL library is allocated. Thus it is recommended to disable interleaving in GotoBLAS (apply the patch provided with caldgemm and set NO_MEMINTERLEAVE in GotoBLAS Make.rule) and use -p.
-A (default: disabled)
Do the DMA transfer to GPU asynchronously. If you are not debugging, always enable this.
-O (default: enabled)
Define backend to use. Available options are:
disabled: CAL
enabled: OpenCL
tried: ./dgemm_bench -c -z -p -m 40960 -n 40960
Error 'Unable to load aticaldd' while initializing CAL
No GPU available, falling back to CPU
Initializing Matrix C
Running Benchmark
Starting DGEMM Run m=40960 k=1024 n=40960 Alpha=-1.000000 Beta=1.000000 LDA=0x408 LDB=0xa008 LDC=0xa008 At=0 Bt=0 ColMajor=0 (A=0x7f5a7553f010, B=0x7f5a6152e010, C=0x7f57412ad010, (C-A=2305843007493692416, (C-B)/w=2251799812046527))
Program: caldgemm Sizes - A: 40960x1024 B: 1024x40960 C:40960x40960 (Host: head.cluster)
System Time 44.493 System Gflops 77.300
HPL.make
-DHPL_NO_MPI_THREAD_CHECK
-DHPL_NO_HACKED_LIB
-DHPL_MPI_FUNNELED_THREADING
root / testing / util / UTIL_cal.cpp
#ifndef HPL_CALDGEMM_BACKEND
------------------------------------------------------------------
cpu1*1 16384 1024 1 1 41.31 314.18 7.099e+01
Avg. matri size per node: 2.00 GiB
Q: http://superuser.com/questions/425084/error-while-compiling-cuda-accelerated-linpack-hpl-2-0-fermi
mpirun_rsh -np 2 -hostfile hosts MV2_CPU_BINDING_LEVEL=socket ./run_linpack
~/cmvapich2/bin/mpirun_rsh -np 2 -hostfile hosts MV2_ENABLE_AFFINITY=0 ./run_linpack
MV2_RNDV_PROTOCOL=R3 MV2_USE_RDMA_ONE_SIDED=0
continued ...
本文档详细介绍了高性能计算环境下,使用HPL和CALDGEMM进行编译配置的具体步骤,包括下载源码、编译选项调整及常见错误解决办法等关键信息。
4265

被折叠的 条评论
为什么被折叠?



