MAST10007 Linear Algebra Semester 2 2024 4Python

Java Python MAST10007 Linear Algebra, Semester 2 2024

Assignment 4

1. For each of the linear transformations in part (a), (b) and (c) below:

• Compute a basis for the kernel

• Compute a basis for the image

• Determine if they are invertible

(a) The mapping R : P1 → P3 given by R(p(x)) = (1 − x2)p(x).

(b) The mapping S : P2 → R3 given by S(p(x)) = (p(1), p(2), p(3)).

(c) The mapping T : P2 → P2 MAST10007 Linear Algebra, Semester 2 2024 Assignment 4Python given by T(p(x)) = x p ′ (x).

2. Let V be a complex vector space with ordered basis B = {e1, e2, e3, e4}. Consider the linear transformation T such that

T(e1) = e2,      T(e2) = e3,      T(e3) = e4,      T(e4) = e1.

(a) Find the matrix representation of T with respect to B.

(b) Find the eigenvalues of T.

(c) Find the eigenvectors of T.

(d) Show that the eigenvectors of T form. a basis C of V .

(e) Find the transition matrix PB,C         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值