1135 Is It A Red-Black Tree (30 分)
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
![]() | ![]() | ![]() |
---|---|---|
Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:
3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
#define rep(i,j,k) for(int i=j;i<k;i++)
struct node{
int d;
node *l,*r;
};
node* build(node *u,int d){
if(u == NULL){
u = new node();
u->d = d;
u->l = u->r =NULL;
}else if(abs(d) <= abs(u->d))
u->l = build(u->l,d);
else
u->r = build(u->r,d);
return u;
}
/* 判断所有的红色节点的孩子是否都为黑色节点 */
bool isChild(node *u){
if(u == NULL) return true;
if(u->d < 0){
if(u->l != NULL && u->l->d < 0) return false;
if(u->r != NULL && u->r->d < 0) return false;
}
return isChild(u->l) && isChild(u->r);
}
/* 计算黑色结点的高度 (同层的黑色结点高度一致) */
int getH(node *u){
if(u == NULL) return 0;
int l = getH(u->l);
int r = getH(u->r);
return u->d > 0 ? max(l,r) + 1 : max(l,r);
}
/* 判断所有层的高度是否都平衡(所有黑色节点都在同一层)*/
bool isBlack(node *u){
if(u == NULL) return true;
int l = getH(u->l);
int r = getH(u->r);
if(l != r) return false;
return isBlack(u->l) && isBlack(u->r);
}
int main(){
std::ios::sync_with_stdio(false);
int n,k;
cin>>n;
rep(i,0,n){
cin>>k;
vector<int> d(k);
node *u = NULL;
rep(j,0,k){
cin>>d[j];
u = build(u,d[j]);
}
if(d[0] < 0 || isChild(u) == false || isBlack(u) == false )
printf("No\n");
else printf("Yes\n");
}
return 0;
}