最全的基于c++的serialport.cpp与serialport.h类文件(解析版)
备注
参考原文件为:serialport.cpp与serialport.h类文件源代码
作者:c344935
链接:https://blog.youkuaiyun.com/c344935/article/details/81133308
工作内容
因为工作需要,要基于C++利用MFC编写西门子PLC的上位机控制软件,开始使用的是CnComm.h类进行编写,但是由于该类封装太好,难于学习,因此选择使用serialport类进行串口通讯编写。由于基础薄弱,因此在读该类时对所有函数,结构体功能进行了详细注释,并利用该类实现了串口通讯。现将本人笔记版上传,希望能够帮助到初学者。因为本人不是科班出身,因此对某些定义有失偏颇,希望大家多多指正。
Serialport.h文件
#pragma once
#ifndef __SERIALPORT_H__
#define __SERIALPORT_H__
#ifndef Wm_SerialPort_MSG_BASE
#define Wm_SerialPort_MSG_BASE WM_USER + 617 //消息编号的基点
#endif
#define Wm_SerialPort_BREAK_DETECTED Wm_SerialPort_MSG_BASE + 1 // A break was detected on input.
#define Wm_SerialPort_CTS_DETECTED Wm_SerialPort_MSG_BASE + 2 // The CTS (clear-to-send) signal changed state.
#define Wm_SerialPort_DSR_DETECTED Wm_SerialPort_MSG_BASE + 3 // The DSR (data-set-ready) signal changed state.
#define Wm_SerialPort_ERR_DETECTED Wm_SerialPort_MSG_BASE + 4 // A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
#define Wm_SerialPort_RING_DETECTED Wm_SerialPort_MSG_BASE + 5 // A ring indicator was detected.
#define Wm_SerialPort_RLSD_DETECTED Wm_SerialPort_MSG_BASE + 6 // The RLSD (receive-line-signal-detect) signal changed state.
#define Wm_SerialPort_RXCHAR Wm_SerialPort_MSG_BASE + 7 // A character was received and placed in the input buffer.
#define Wm_SerialPort_RXFLAG_DETECTED Wm_SerialPort_MSG_BASE + 8 // The event character was received and placed in the input buffer.
#define Wm_SerialPort_TXEMPTY_DETECTED Wm_SerialPort_MSG_BASE + 9 // The last character in the output buffer was sent.
#define Wm_SerialPort_RXSTR Wm_SerialPort_MSG_BASE + 10 // Receive string
#define MaxSerialPortNum 20 //最大能够访问的串口个数,不是串口号。
#define IsReceiveString 0 //采用何种方式接收:ReceiveString 1多字符串接收(对应响应函数为Wm_SerialPort_RXSTR),ReceiveString 0一个字符一个字符接收(对应响应函数为Wm_SerialPort_RXCHAR)
#include "stdio.h"
#include "stdafx.h"
#include<windows.h>
//自定义串口状态结构体,包含 portNr串口号,bytesRead读取到的字节数
struct serialPortInfo
{
UINT portNr;//串口号
DWORD bytesRead;//读取的字节数
};
class CSerialPort
{
public:
// contruction and destruction
int GetPortNO();
CSerialPort();
virtual ~CSerialPort();
// port initialisation
// UINT stopsbits = ONESTOPBIT stop is index 0 = 1 1=1.5 2=2
// 切记:stopsbits = 1,不是停止位为1。
// by itas109 20160506
BOOL InitPort(HWND pPortOwner, UINT portnr = 1, UINT baud = 9600,
TCHAR parity =_T('N'), UINT databits = 8, UINT stopsbits = ONESTOPBIT,
DWORD dwCommEvents = EV_RXCHAR | EV_CTS, UINT nBufferSize = 512,
DWORD ReadIntervalTimeout = 1000,
DWORD ReadTotalTimeoutMultiplier = 1000,
DWORD ReadTotalTimeoutConstant = 1000,
DWORD WriteTotalTimeoutMultiplier = 1000,
DWORD WriteTotalTimeoutConstant = 1000);
// start/stop comm watching
//控制串口监视线程
BOOL StartMonitoring();//开始监听
BOOL ResumeMonitoring();//恢复监听
BOOL SuspendMonitoring();//挂起监听
BOOL IsThreadSuspend(HANDLE hThread);//判断线程是否挂起,hThread为要判断的线程
DWORD GetWriteBufferSize();//获取写缓冲大小
DWORD GetCommEvents();//获取事件
DCB GetDCB();//获取DCB
//写数据到串口
void WriteToPort(char* string, size_t n); //
void WriteToPort(BYTE* Buffer, size_t n); //
void ClosetoPort(); //
BOOL IsOpen();
void QueryKey(HKEY hKey);///查询注册表的串口号,将值存于数组中
#ifdef _AFX
void Hkey2ComboBox(CComboBox& m_PortNO); //将QueryKey查询到的串口号添加到CComboBox控件中
#endif // _AFX
protected:
////////////////// protected memberfunctions///////////////////
void ProcessErrorMessage(TCHAR* ErrorText); //错误处理
static DWORD WINAPI CommThread(LPVOID pParam); //线程函数
static void ReceiveChar(CSerialPort* port);
static void ReceiveStr(CSerialPort* port); //
static void WriteChar(CSerialPort* port);
////////////////////////////thread////////////////////////////
HANDLE m_Thread; //监视线程句柄
BOOL m_bIsSuspened; //thread监视线程是否挂起
////////////////////synchronisation objects///////////////////
CRITICAL_SECTION m_csCommunicationSync; //临界资源
BOOL m_bThreadAlive; //监视线程运行标志,1线程运行,0线程挂起
/////////////////////// 定义handles///////////////////////////
HANDLE m_hShutdownEvent; //关闭事件响应 句柄
HANDLE m_hComm; //绑定的串口句柄
HANDLE m_hWriteEvent; //写事件句柄,如果利用SetEvent(m_hWriteEvent)调用,则表示开始串口写入。
HANDLE m_hEventArray[3]; //设定事件句柄数组,用于定义优先级
///////////////////////定义结构体/////////////////////////////
OVERLAPPED m_ov; //声明异步I/O结构体OVERLAPPED,之后利用m_ov调用底层异步处理程序
/*OVERLAPPED结构体详解
typedef struct _OVERLAPPED {
DWORD Internal; //预留给操作系统使用。它指定一个独立于系统的状态,当GetOverlappedResult函数返回时没有设置扩展错误信息ERROR_IO_PENDING时有效。
DWORD InternalHigh; //预留给操作系统使用。它指定长度的数据转移,当GetOverlappedResult函数返回TRUE时有效。
DWORD Offset; //该文件的位置是从文件起始处的字节偏移量。调用进程设置这个成员之前调用ReadFile或WriteFile函数。当读取或写入命名管道和通信设备时这个成员被忽略设为零。
DWORD OffsetHigh; //指定文件传送的字节偏移量的高位字。当读取或写入命名管道和通信设备时这个成员被忽略设为零。
HANDLE hEvent; //在转移完成时该事件设置为有信号状态。调用进程集这个成员在调用ReadFile、 WriteFile、TransactNamedPipe、 ConnectNamedPipe函数之前。
} OVERLAPPED*/
COMMTIMEOUTS m_SerialPortTimeouts; //超时设置
/*COMMTIMEOUTS 结构体详解
typedef struct _COMMTIMEOUTS {
DWORD ReadIntervalTimeout; //两字符之间最大的延时,当读取串口数据时,一旦两个字符传输的时间差超过该时间,读取函数将返回现有的数据。
DWORD ReadTotalTimeoutMultiplier; //读取每字符间的超时。 指定以毫秒为单位的累积值。用于计算读操作时的超时总数。对于每次读操作,该值与所要读的字节数相乘。
DWORD ReadTotalTimeoutConstant; //一次读取串口数据的固定超时。
DWORD WriteTotalTimeoutMultiplier; //写入每字符间的超时
DWORD WriteTotalTimeoutConstant; //一次写入串口数据的固定超时。
} COMMTIMEOUTS, *LPCOMMTIMEOUTS;*/
DCB m_dcb; //设备控制块。串口通信基本设置结构体
/*DCB结构体定义
typedef struct _DCB {
DWORD DCBlength; //DCB结构大小,即sizeof(DCB),在调用SetCommState来更新DCB前必须作设置
DWORD BaudRate; //指定当前采用的波特率,应与所连接的通讯设备相匹配
DWORD fBinary : 1; //指定是否允许二进制模式。Win32 API不支持非二进制模式传输,应设置为true
DWORD fParity : 1; //指定奇偶校验是否允许,在为true时具体采用何种校验看Parity 设置
DWORD fOutxCtsFlow : 1; //是否监控CTS(clear-to-send)信号来做输出流控。当设置为true时: 若CTS为低电平,则数据发送将被挂起,直至CTS变为高。
DWORD fOutxDsrFlow : 1; //
DWORD fDtrControl : 2; //
DWORD fDsrSensitivity : 1; //
DWORD fTXContinueOnXoff : 1; //
DWORD fOutX : 1; // XON/XOFF 流量控制在发送时是否可用。
DWORD fInX : 1; //XON/XOFF 流量控制在接收时是否可用。
DWORD fErrorChar : 1; //该值为TRUE,则用ErrorChar指定的字符代替奇偶校验错误的接收字符
DWORD fNull : 1; //为TRUE时,接收时自动去掉空(0值)字节
DWORD fRtsControl : 2; //
DWORD fAbortOnError : 1; //读写操作发生错误时是否取消操作。若设置为true,则当发生读写错误时,将取消所有读写操作
DWORD fDummy2 : 17; //
WORD wReserved; //未启用,必须设置为0
WORD XonLim; //在XON字符发送前接收缓冲区内可允许的最小字节数
WORD XoffLim; //
BYTE ByteSize; //
BYTE Parity; //指定端口数据传输的校验方法。
BYTE StopBits; //指定端口当前使用的停止位数,可取值
char XonChar; //指定XON字符
char XoffChar; //指定XOFF字符
char ErrorChar; //指定ErrorChar字符(代替接收到的奇偶校验发生错误时的字节)
char EofChar; //指定用于标示数据结束的字符
char EvtChar; //
WORD wReserved1; //保留,未启用
} DCB;*/
////////////////////// owner window//////////////////////////
HWND m_pOwner; //串口绑定的窗口句柄
// misc
UINT m_nPortNr; //串口号
PBYTE m_szWriteBuffer; //写缓冲区指针。
DWORD m_dwCommEvents; ////定义串口事件
DWORD m_nWriteBufferSize; //写缓冲大小
size_t m_nWriteSize; //写入字节数
};
#endif __SERIALPORT_H__
SerialPort.cpp
#include "stdafx.h"
#include "SerialPort.h"
#include <assert.h>
int m_nComArray[20];//存放活跃的串口号
int CSerialPort::GetPortNO()
{
return m_nPortNr;
}
//定义结构体
CSerialPort::CSerialPort() //初始化设置
{
m_hComm = NULL; //初始化串口句柄
// initialize overlapped structure members to zero PS:overlapped为串口通信的重叠模式,在createfile内为 FILE_FLAG_OVERLAPPED,区别分于同步模式的NULL
///初始化异步结构体
m_ov.Offset = 0; //初始化传输文件的位置
m_ov.OffsetHigh = 0; //文件起始处的字节偏移量的高字位,PS:初始化指定传输文件的高度
// create events
m_ov.hEvent = NULL; //初始化 传送完成时的事件响应函数,一般在Readfile(),Writefile()之前。
m_hWriteEvent = NULL; //初始化写串口事件
m_hShutdownEvent = NULL;
m_szWriteBuffer = NULL;
m_bThreadAlive = FALSE;
m_nWriteSize = 1;
m_bIsSuspened = FALSE;
}
//SerialPort析构函数用于Delete dynamic memory
CSerialPort::~CSerialPort()
{
MSG message; //传递MSG结构体,建立消息对象,类似于线程消息队列
/*MSG结构体详解
背景:windows是通过监视各种输入设备,把发生的事件转化为消息的,并将消息保存在消息队列中。最后当前的应用程序从自己的消息队列中按顺序检索消息,并把每一个消息发送到所对应的窗口消息处理函数中去
typedef struct tagMSG{
HWND hwnd; //消息所指向的窗口的句柄。
UINT message; //消息标识符
WPARAM wparam; //32位的“消息参数”,该参数的含义和取值取决于具体的消息
LPARAM lparam; //另外一个32位的“消息参数”,该参数的含义和取值同样取决于具体的消息
DWORD time; //消息进入消息队列的时间
POINT pt; //消息进入消息中的鼠标指针的位置坐标。
}MSG,*PMSG;
*/
//增加线程挂起判断,解决由于线程挂起导致串口关闭死锁的问题
if (IsThreadSuspend(m_Thread))
{
ResumeThread(m_Thread);
}
//若串口句柄无效,释放句柄
if (m_hComm == INVALID_HANDLE_VALUE)
{
CloseHandle(m_hComm); //返回值Long型,!0 表示成功,零表示失败。会设置GetLastError
m_hComm = NULL;
return;
}
do //do{} while{}循环
{
SetEvent(m_hShutdownEvent); //将 关闭事件 变为有信号状态,防止死锁
if (::PeekMessage(&message, m_pOwner, 0, 0, PM_REMOVE)) //PeekMessage用于读响应消息(消息队列地址的指针,窗口指向:该窗口消息被检索,消息下界,消息上界:NULL>检索所有消息,检索后如何处理:PM_REMOVE>处理后清除消息PM_NOREMOVE>处理后不清除消息)
{
::TranslateMessage(&message); //将串口消息转换为字符消息,并存到MSG消息对象中(利用指针形式传递)。 //
//若消息被转换,则返回WM_KEYDOWN, WM_KEYUP, WM_SYSKEYDOWN, 或 WM_SYSKEYUP。若未转换,返回0.
::DispatchMessage(&message); //该函数调度含有消息的MSG指针指向的消息传递给窗口程序
}
} while (m_bThreadAlive); //如果监视线程状态位为打开,则执行do{}内容
// if the port is still opened: close it
if (m_hComm != NULL)
{
CloseHandle(m_hComm);
m_hComm = NULL;
}
// Close Handles
//关闭句柄
if (m_hShutdownEvent != NULL) //关闭ShutdownEvent事件
CloseHandle(m_hShutdownEvent);
if (m_ov.hEvent != NULL) //关闭异步通信信号事件
CloseHandle(m_ov.hEvent);
if (m_hWriteEvent != NULL) //关闭写串口事件
CloseHandle(m_hWriteEvent);
//TRACE("Thread ended\n");
if (m_szWriteBuffer != NULL) //若写缓冲区不为NULL,则清空
{
delete[] m_szWriteBuffer; //释放写缓冲区
m_szWriteBuffer = NULL;
}
}
//
// Initialize the port. This can be port 1 to MaxSerialPortNum.
//初始化串口。只能是1到MaxSerialPortNum
//初始化串口函数
BOOL CSerialPort::InitPort(HWND pPortOwner, // 绑定串口响应消息MSG对应窗口的句柄,the owner (CWnd) of the port (receives message)
UINT portnr, // 串口号 (1到MaxSerialPortNum)
UINT baud, // 波特率
TCHAR parity, // 校验位,不区分大小写 parity n=none,e=even,o=odd,m=mark,s=space
UINT databits, // 数据位 databits 5,6,7,8
UINT stopbits, // 停止位 stopbits 1,1.5,2
DWORD dwCommEvents, //串口响应事件,有EV_RXCHAR,EV_CTS, EV_DSR ,EV_RING等等。
// EV_RXCHAR:设备返回数据时,第一个字符达到缓冲区时触发
UINT writebuffersize, // size of the writebuffer
DWORD ReadIntervalTimeout, //读间隔超时
DWORD ReadTotalTimeoutMultiplier,//读时间系数
DWORD ReadTotalTimeoutConstant,//读时间常量
DWORD WriteTotalTimeoutMultiplier,//写时间系数
DWORD WriteTotalTimeoutConstant)//写时间常量
{
assert(portnr > 0 && portnr < MaxSerialPortNum); //断言:串口号必须是大于0小于MaxSerialPortNum
assert(pPortOwner != NULL); //断言:必须要为串口响应消息绑定一个窗口句柄
MSG message; //见前文
//增加线程挂起判断,解决由于线程挂起导致串口关闭死锁的问题
if (IsThreadSuspend(m_Thread)) //若挂起
{
ResumeThread(m_Thread); //恢复线程
}
//若线程运行,则挂起
// if the thread is alive: Kill
if (m_bThreadAlive)
{
do
{
SetEvent(m_hShutdownEvent); //将 关闭事件 变为有信号状态
//防止死锁,同上
if (::PeekMessage(&message, m_pOwner, 0, 0, PM_REMOVE))
{
::TranslateMessage(&message);
::DispatchMessage(&message);
}
} while (m_bThreadAlive);
//TRACE("Thread ended\n");
Sleep(50);//此处的延时很重要,因为如果串口开着,发送关闭指令到彻底关闭需要一定的时间,这个延时应该跟电脑的性能相关
}
// 重置 events
if (m_ov.hEvent != NULL)
ResetEvent(m_ov.hEvent); //将异步通信Event变为无信号状态
else //change by COMTOOL
m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); //CreateEvent(安全属性:NULL,复位方式:TRUE>用ResetEvent复位FALSE被线程释放后自动复位,初始状态:TRUE>有信号FALSE》无信号,指定名字:NULL>无名事件对象)
if (m_hWriteEvent != NULL)
ResetEvent(m_hWriteEvent); //清除WriteEvent
else //change by COMTOOL
m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
if (m_hShutdownEvent != NULL)
ResetEvent(m_hShutdownEvent); //清除ShutdownEvent
else //change by COMTOOL
m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
// initialize the event objects
//事件数组初始化,设定优先级别
m_hEventArray[0] = m_hShutdownEvent; // highest priority
//为避免有些串口设备无数据输入,但一直返回读事件,使监听线程阻塞,
//可以将读写放在两个线程中,或者修改读写事件优先级
//修改优先级有两个方案:
//方案一为监听线程中WaitCommEvent()后,添加如下两条语句:
//if (WAIT_OBJECT_O == WaitForSingleObject(port->m_hWriteEvent, 0))
// ResetEvent(port->m_ov.hEvent);
//方案二为初始化时即修改,即下面两条语句:
m_hEventArray[1] = m_hWriteEvent;
m_hEventArray[2] = m_ov.hEvent;
/*m_hEventArray[1] = m_ov.hEvent;
m_hEventArray[2] = m_hWriteEvent;*/
//初始化临界资源 initialize critical section
/*
临界区背景:
单进程的各个线程可以使用临界资源对象来解决同步互斥问题,该对象不能保证哪个线程能够获得到临界资源对象,该系统能公平的对待每一个线程。(百度百科)
在使用一个临界区对象以前,一些进程中的线程必须调用InitializeCriticalSection函数来初始化对象。一旦一个临界区对象已被初始化,该进程的线程可以在EnterCriticalSection或LeaveCriticalSection函数指定对象,提供对共享资源的相互独占式访问。
在将临界区传递给 InitializeCriticalSection 时(或者更准确地说,是在传递其地址时),临界区即开始存在。初始化之后,代码即将临界区传递给 EnterCriticalSection 和 LeaveCriticalSection API。一个线程自 EnterCriticalSection 中返回后,所有其他调用 EnterCriticalSection 的线程都将被阻止,直到第一个线程调用 LeaveCriticalSection 为止。
*/
InitializeCriticalSection(&m_csCommunicationSync);
// set buffersize for writing and save the owner
//为读写缓冲区绑定窗口函数
m_pOwner = pPortOwner;
if (m_szWriteBuffer != NULL) //释放写缓冲区
{
delete[] m_szWriteBuffer;
m_szWriteBuffer = NULL;
}
m_szWriteBuffer = new BYTE[writebuffersize]; //新建写缓冲区
m_nPortNr = portnr; //定义串口号
m_nWriteBufferSize = writebuffersize; //定义写缓冲区大小
m_dwCommEvents = dwCommEvents; //定义串口响应事件,例如EV_RXCHAR,EV_CTS, EV_DSR ,EV_RING等等。
BOOL bResult = FALSE; //
TCHAR *szPort = new TCHAR[MAX_PATH]; //该数组用于存放“COM?”
TCHAR *szBaud = new TCHAR[MAX_PATH]; //该数组用于BuildCommDCB函数,存放"baud="<bau>d parity=<parity> data=<databits> stop=<mystop>")
/*
多个线程操作相同的数据时,一般是需要按顺序访问的,否则会引导数据错乱,
无法控制数据,变成随机变量。为解决这个问题,就需要引入互斥变量,让每
个线程都按顺序地访问变量。这样就需要使用临界区InitializeCriticalSection,
用EnterCriticalSection和LeaveCriticalSection函数限定区域进行独立使用。
*/
// now it critical! 开始使用临界区
EnterCriticalSection(&m_csCommunicationSync); ///临界区进入起点
// if the port is already opened: close it
//串口已打开就关掉
if (m_hComm != NULL)
{
CloseHandle(m_hComm);
m_hComm = NULL;
}
// prepare port strings
//将UINT的整数型串口号转换为string形式的"COM?"形式
_stprintf_s(szPort, MAX_PATH, _T("\\\\.\\COM%d"), portnr); //(\\\\.\\COM)可以显示COM10以上端口
int mystop; // 停止位:0 = 1 1=1.5 2=2。注意1不等于1.
switch (stopbits)
{
case 0:
mystop = ONESTOPBIT;
break;
case 1:
mystop = ONE5STOPBITS;
break;
case 2:
mystop = TWOSTOPBITS;
break;
//增加默认情况,因为stopbits=1.5时,SetCommState会报错。
//一般的电脑串口不支持1.5停止位,这个1.5停止位似乎用在红外传输上的。
default:
mystop = ONESTOPBIT;
break;
}
int myparity; //校验位
myparity = 0;
parity = _totupper(parity); //小写字母转换为大写字母
switch (parity)
{
case _T('N'):
myparity = 0;
break;
case _T('O'):
myparity = 1;
break;
case _T('E'):
myparity = 2;
break;
case _T('M'):
myparity = 3;
break;
case _T('S'):
myparity = 4;
break;
//增加默认情况。
default:
myparity = 0;
break;
}
_stprintf_s(szBaud, MAX_PATH, _T("baud=%d parity=%c data=%d stop=%d"), baud, parity, databits, mystop);
// get a handle to the port
/*
通信程序在CreateFile处指定串口设备及相关的操作属性,再返回一个句柄,
该句柄将被用于后续的通信操作,并贯穿整个通信过程串口打开后,其属性
被设置为默认值,根据具体需要,通过调用GetCommState(hComm,&&dcb)读取
当前串口设备控制块DCB设置,修改后通过SetCommState(hComm,&&dcb)将其写
入。运用ReadFile()与WriteFile()这两个API函数实现串口读写操作,若为异
步通信方式,两函数中最后一个参数为指向OVERLAPPED结构的非空指针,在读
写函数返回值为FALSE的情况下,调用GetLastError()函数,返回值为ERROR_IO_PENDING,
表明I/O操作悬挂,即操作转入后台继续执行。此时,可以用WaitForSingleObject()
来等待结束信号并设置最长等待时间
*/
m_hComm = CreateFile(szPort, // 打开串口COMX,并指定串口句柄m_hComm
GENERIC_READ | GENERIC_WRITE, // 可读可写 read/write types
0, // 独占方式,串口不支持共享 comm devices must be opened with exclusive access
NULL, // 安全属性指针,默认值为NULL no security attributes
OPEN_EXISTING, // 打开现有的串口文件 comm devices must use OPEN_EXISTING
FILE_FLAG_OVERLAPPED, // 0:同步方式,FILE_FLAG_OVERLAPPED:异步方式
0); //用于复制文件句柄,默认值为NULL/0,对串口而言该参数必须置为NULL
//创建失败
if (m_hComm == INVALID_HANDLE_VALUE) //如果打开串口失败
{
//串口打开失败,增加提示信息
switch (GetLastError()) //获取串口代码
{
//串口不存在
case ERROR_FILE_NOT_FOUND:
{
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_FILE_NOT_FOUND,Error Code:%d"), portnr, GetLastError());
MessageBox(NULL, Temp, _T("COM InitPort Error"), MB_ICONERROR);
break;
}
//串口拒绝访问
case ERROR_ACCESS_DENIED:
{
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_ACCESS_DENIED,Error Code:%d"), portnr, GetLastError());
MessageBox(NULL, Temp, _T("COM InitPort Error"), MB_ICONERROR);
break;
}
default:
break;
}
// port not found
delete[] szPort; //释放串口号定义内存
delete[] szBaud; //释放波特率定义内存
return FALSE;
}
// set the timeout values
///设置超时
m_SerialPortTimeouts.ReadIntervalTimeout = ReadIntervalTimeout * 1000;
m_SerialPortTimeouts.ReadTotalTimeoutMultiplier = ReadTotalTimeoutMultiplier * 1000;
m_SerialPortTimeouts.ReadTotalTimeoutConstant = ReadTotalTimeoutConstant * 1000;
m_SerialPortTimeouts.WriteTotalTimeoutMultiplier = WriteTotalTimeoutMultiplier * 1000;
m_SerialPortTimeouts.WriteTotalTimeoutConstant = WriteTotalTimeoutConstant * 1000;
// configure
///配置
///分别调用Windows API设置串口参数
if (SetCommTimeouts(m_hComm, &m_SerialPortTimeouts))//设置超时
/*SetCommTimeouts函数的第一个参数hFile是由CreateFile函数返回指向已打开串行口的句柄。
第二个参数指向拥有超时数据的控制块COMMTIMEOUTS。
如果函数调用成功,则返回值为非0;若函数调用失败,则返回值为0。*/
{
/*
若对端口数据的响应时间要求较严格,可采用事件驱动方式。
事件驱动方式通过设置事件通知,当所希望的事件发生时,Windows
发出该事件已发生的通知,这与DOS环境下的中断方式很相似。Windows
定义了9种串口通信事件,较常用的有以下三种:
EV_RXCHAR:接收到一个字节,并放入输入缓冲区;
EV_TXEMPTY:输出缓冲区中的最后一个字符,发送出去;
EV_RXFLAG:接收到事件字符(DCB结构中EvtChar成员),放入输入缓冲区
在用SetCommMask()指定了有用的事件后,应用程序可调用WaitCommEvent()来等待事
件的发生。SetCommMask(hComm,0)可使WaitCommEvent()中止
*/
if (SetCommMask(m_hComm, dwCommEvents))//SetCommMask用于设定需要接收通知的事件并将结果放入dwCommEvents,
{
if (GetCommState(m_hComm, &m_dcb))//获取当前DCB参数。GetCommState函数的第一个参数hFile是由CreateFile函数返回指向已打开串行口的句柄。第二个参数指向设备控制块DCB。如果函数调用成功,则返回值为非0;若函数调用失败,则返回值为0。
{
m_dcb.EvtChar = 'q'; //当接收到此字符时,会产生一个EV_RXFLAG事件,如果用SetCommMask函数中指定了EV_RXFLAG , 则可用WaitCommEvent 来监测该事件
m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // RTS(request-to-send)流控制设置。RTS_CONTROL_ENABLE为打开设备时置RTS信号为高电平,应用程序可通过调用
m_dcb.BaudRate = baud; //指定当前采用的波特率,应与所连接的通讯设备相匹配
m_dcb.Parity = myparity; //指定端口数据传输的校验方法
m_dcb.ByteSize = databits; //一个字节大小
m_dcb.StopBits = mystop; //停止位设置
//if (BuildCommDCB(szBaud &m_dcb))///填写DCB结构,和SetCommState类似。填写形式为BuildCommDCB(〝COM1:2400,n,8,1〞,&dcb);
//{
if (SetCommState(m_hComm, &m_dcb))//配置该串口绑定串口的DCB
; /*SetCommState,函数的第一个参数hFile是由CreateFile函数返回指向已打开串行口的句柄。
第二个参数指向设备控制块DCB。如果函数调用成功,则返回值为非0;
若函数调用失败,则返回值为0。*/
else
ProcessErrorMessage(_T("SetCommState()"));
//}
//else
// ProcessErrorMessage("BuildCommDCB()");
}
else
ProcessErrorMessage(_T("GetCommState()"));
}
else
ProcessErrorMessage(_T("SetCommMask()"));
}
else
ProcessErrorMessage(_T("SetCommTimeouts()"));
delete[] szPort;
delete[] szBaud;
// flush the port
//终止读写并清空接收和发送
PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
/*PurgeComm(HANDLE hFile,DWORD dwFlags )
参数dwFlags指定要完成的操作,可以是下列值的组合:
PURGE_TXABORT 终止所有正在进行的字符输出操作, 完成一个正处于等待状态的重叠i / o操作, 他将产生一个事件, 指明完成了写操作
PURGE_RXABORT 终止所有正在进行的字符输入操作, 完成一个正在进行中的重叠i / o操作, 并带有已设置得适当事件
PURGE_TXCLEAR 这个命令指导设备驱动程序清除输出缓冲区,经常与PURGE_TXABORT 命令标志一起使用
PURGE_RXCLEAR 这个命令用于设备驱动程序清除输入缓冲区,经常与PURGE_RXABORT 命令标志一起使用*/
// release critical section
//释放临界资源
LeaveCriticalSection(&m_csCommunicationSync);//解锁 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
//TRACE("Initialisation for communicationport %d completed.\nUse Startmonitor to communicate.\n", portnr);
return TRUE;
}
//监视线程的大致流程:
//检查串口-->进入循环{WaitCommEvent(不阻塞询问)询问事件-->如果有事件来到-->到相应处理(关闭\读\写)}
//监视线程函数:The CommThread Function
DWORD WINAPI CSerialPort::CommThread(LPVOID pParam)
{
// Cast the void pointer passed to the thread back to a pointer of CSerialPort class
CSerialPort *port = (CSerialPort*)pParam;
// Set the status variable in the dialog class。
// TRUE表示线程正在运行,TRUE to indicate the thread is running.
port->m_bThreadAlive = TRUE;
// Misc. variables
DWORD BytesTransfered = 0;
DWORD Event = 0; //返回事件定义编号:0-关闭事件,1-发送数据,2-串口响应事件
DWORD CommEvent = 0; //串口事件标识符
DWORD dwError = 0; //获取失败状态函数,dwError = GetLastError()
COMSTAT comstat; //定义串口状态结构体
BOOL bResult = TRUE; //通信事件出现与否判断标志位。
// Clear comm buffers at startup
///开始时清除串口缓冲
if (port->m_hComm) // 如果串口打开,check if the port is opened
PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT); //清除串口,同上
// begin forever loop. This loop will run as long as the thread is alive.
///只要线程存在就不断读取数据
for (;;) //开始死循环
{
// Make a call to WaitCommEvent(). This call will return immediatly
// because our port was created as an async port (FILE_FLAG_OVERLAPPED
// and an m_OverlappedStructerlapped structure specified). This call will cause the
// m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to
// be placed in a non-signeled state if there are no bytes available to be read,
// or to a signeled state if there are bytes available. If this event handle
// is set to the non-signeled state, it will be set to signeled when a
// character arrives at the port.
// we do this for each port!
/*
WaitCommEvent函数第3个参数1pOverlapped可以是一个OVERLAPPED结构的变量指针
,也可以是NULL,当用NULL时,表示该函数是同步的,否则表示该函数是异步的。
调用WaitCommEvent时,如果异步操作不能立即完成,会立即返回FALSE,系统在
WaitCommEvent返回前将OVERLAPPED结构成员hEvent设为无信号状态,等到产生通信
事件时,系统将其置有信号
*/
bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);//表示该函数是异步的
/*BOOL WaitCommEvent //判断用SetCommMask()函数设置的串口通信事件是否已发生。
(HANDLE hFile,
LPDWORD lpEvtMask, //如果发生错误,pEvtMask指向0,否则指向某一事件
LPOVERLAPPED lpOverlapped //异步结构,用来保存异步操作结果。
);*/
if (!bResult) //若WaitCommEvent失败
{
// If WaitCommEvent() returns FALSE, process the last error to determin the reason.
//如果WaitCommEvent返回Error为FALSE,则查询错误信息
switch (dwError = GetLastError())
{
case ERROR_IO_PENDING: //正常情况,没有字符可读,操作悬挂 erroe code:997
{
// This is a normal return value if there are no bytes
// to read at the port.
// Do nothing and continue
break;
}
case ERROR_INVALID_PARAMETER://系统错误 erroe code:87
{
// Under Windows NT, this value is returned for some reason.
// I have not investigated why, but it is also a valid reply
// Also do nothing and continue.
break;
}
case ERROR_ACCESS_DENIED://拒绝访问 erroe code:5
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_ACCESS_DENIED,WaitCommEvent() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM WaitCommEvent Error"), MB_ICONERROR);
break;
}
case ERROR_INVALID_HANDLE://打开串口失败 erroe code:6
{
port->m_hComm = INVALID_HANDLE_VALUE;
break;
}
case ERROR_BAD_COMMAND://连接过程中非法断开 erroe code:22
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_BAD_COMMAND,WaitCommEvent() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM WaitCommEvent Error"), MB_ICONERROR);
break;
}
default://发生其他错误,其中有串口读写中断开串口连接的错误(错误22)
{
// All other error codes indicate a serious error has
port->m_hComm = INVALID_HANDLE_VALUE; //发生错误时,将串口句柄置为无效句柄
// occured. Process this error.
port->ProcessErrorMessage(_T("WaitCommEvent()"));
break;
}
}
}
else //串口事件发生,WaitCommEvent()能正确返回
{
// If WaitCommEvent() returns TRUE, check to be sure there are
// actually bytes in the buffer to read.
// If you are reading more than one byte at a time from the buffer
// (which this program does not do) you will have the situation occur
// where the first byte to arrive will cause the WaitForMultipleObjects()
// function to stop waiting. The WaitForMultipleObjects() function
// resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state
// as it returns.
//
// If in the time between the reset of this event and the call to
// ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again
// to the signeled state. When the call to ReadFile() occurs, it will
// read all of the bytes from the buffer, and the program will
// loop back around to WaitCommEvent().
//
// At this point you will be in the situation where m_OverlappedStruct.hEvent is set,
// but there are no bytes available to read. If you proceed and call
// ReadFile(), it will return immediatly due to the async port setup, but
// GetOverlappedResults() will not return until the next character arrives.
//
// It is not desirable for the GetOverlappedResults() function to be in
// this state. The thread shutdown event (event 0) and the WriteFile()
// event (Event2) will not work if the thread is blocked by GetOverlappedResults().
//
// The solution to this is to check the buffer with a call to ClearCommError().
// This call will reset the event handle, and if there are no bytes to read
// we can loop back through WaitCommEvent() again, then proceed.
// If there are really bytes to read, do nothing and proceed.
bResult = ClearCommError(port->m_hComm, &dwError, &comstat); //清除串口错误事件
/*BOOL ClearCommError( //此函数清除硬件的通讯错误以及获取通讯设备的当前状态
HANDLE hFile, //由CreateFile函数返回指向已打开串行口的句柄
LPDWORD lpErrors, //错误类型
LPCOMSTAT lpStat //返回设备状态的控制块COMSTAT
);*/
if (comstat.cbInQue == 0) //comstat.cbInQue输入缓冲区中的字节数,cbOutQue输出缓冲区中的字节数
continue;
} // end if bResult
///主等待函数,会阻塞线程
// Main wait function. This function will normally block the thread
// until one of nine events occur that require action.
///等待3个事件:关断/读/写,有一个事件发生就返回
Event = WaitForMultipleObjects(3, //3个事件如果函数成功,返回值表示该事件导致该函数返回。
port->m_hEventArray, //事件数组
FALSE, //有一个事件发生就返回
INFINITE);//超时时间间隔超时间隔,以毫秒为单位。
/*如果指定了非零值,则该函数将一直等到指定的对象发出信号或经过间隔。
如果dwMilliseconds为零,则如果未发出指示对象,则该函数不会进入等待状态;它总是立即返回。
如果dwMilliseconds是INFINITE,则仅在发出指定对象信号时才返回该函数。*/
switch (Event)
{
case 0:
{
// Shutdown event. This is event zero so it will be
// the higest priority and be serviced first.
///关断事件,关闭串口
CloseHandle(port->m_hComm);
port->m_hComm = NULL;
port->m_bThreadAlive = FALSE;
// Kill this thread. break is not needed, but makes me feel better.
AfxEndThread(100); //COMTOOL change
// ::ExitThread(100); //COMTOOL change
break;
}
case 1: // write event 发送数据
{
// Write character event from port
WriteChar(port); //写字符串
break;
}
case 2: // read event 将定义的各种消息发送出去
{
GetCommMask(port->m_hComm, &CommEvent); //获取串口事件
if (CommEvent & EV_RXCHAR) //接收到字符,并置于输入缓冲区中
{
if (IsReceiveString == 1)
{
ReceiveStr(port);//多字符接收
}
else if (IsReceiveString == 0)
{
ReceiveChar(port);//单字符接收
}
else
{
//默认多字符接收
ReceiveStr(port);//多字符接收
}
}
if (CommEvent & EV_CTS) //CTS信号状态发生变化
::SendMessage(port->m_pOwner, Wm_SerialPort_CTS_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
if (CommEvent & EV_RXFLAG) //接收到事件字符,并置于输入缓冲区中
::SendMessage(port->m_pOwner, Wm_SerialPort_RXFLAG_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
if (CommEvent & EV_BREAK) //输入中发生中断
::SendMessage(port->m_pOwner, Wm_SerialPort_BREAK_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
if (CommEvent & EV_ERR) //发生线路状态错误,线路状态错误包括CE_FRAME,CE_OVERRUN和CE_RXPARITY
::SendMessage(port->m_pOwner, Wm_SerialPort_ERR_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
if (CommEvent & EV_RING) //检测到振铃指示
::SendMessage(port->m_pOwner, Wm_SerialPort_RING_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
break;
}
default:
{
MessageBox(NULL, _T("Receive Error!"), _T("COM Receive Error"), MB_ICONERROR);
break;
}
} // end switch
} // close forever loop
return 0;
}
//
// start comm watching
//开启监视线程
BOOL CSerialPort::StartMonitoring()
{
//if (!(m_Thread = AfxBeginThread(CommThread, this)))
if (!(m_Thread = ::CreateThread(NULL, 0, CommThread, this, 0, NULL)))
/*CreateThread 函数定义
CreateThread( //函数成功,返回线程句柄;函数失败返回false
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes, //线程安全属性.指向SECURITY_ATTRIBUTES型态的结构的指针,NULL使用默认安全性
_In_ SIZE_T dwStackSize, //堆栈大小.设置初始栈的大小,以字节为单位,如果为0,那么默认将使用与调用该函数的线程相同的栈空间大小。
_In_ LPTHREAD_START_ROUTINE lpStartAddress, //线程函数.指向线程函数的指针
_In_opt_ __drv_aliasesMem LPVOID lpParameter, //线程参数.向线程函数传递的参数,是一个指向结构的指针,不需传递参数时,为NULL。
_In_ DWORD dwCreationFlags, //线程创建属性,0-表示创建后立即激活
_Out_opt_ LPDWORD lpThreadId //线程的id
);*/
return FALSE;
//TRACE("Thread started\n");
return TRUE;
}
// Restart the comm thread
//从挂起恢复监视线程
BOOL CSerialPort::ResumeMonitoring()
{
//TRACE("Thread resumed\n");
//m_Thread->ResumeThread();
::ResumeThread(m_Thread);
return TRUE;
}
//
// Suspend the comm thread
//挂起监视线程
BOOL CSerialPort::SuspendMonitoring()
{
//TRACE("Thread suspended\n");
//m_Thread->SuspendThread();
::SuspendThread(m_Thread); //SuspendThread用于挂起线程如果返回-1(0xFFFFFFFF),表示失败;如果返回整数,表示线程已经被挂起过的次数。
return TRUE;
}
//判断线程是否挂起函数,如果挂起为1,否则为0.
BOOL CSerialPort::IsThreadSuspend(HANDLE hThread)
{
DWORD count = SuspendThread(hThread); //SuspendThread用于挂起线程,如果返回-1(0xFFFFFFFF),表示失败;如果返回整数,表示线程已经被挂起过的次数。
if (count == -1)
{
return FALSE;
}
ResumeThread(hThread); //ResumeThread可以恢复被SuspendThread挂起的线程的执行。
return (count != 0); //检查count和0是否不等,不等为1,相等为0.
}
//
// If there is a error, give the right message
//提示函数:如果有错误,给出具体提示信息:ErrorText
void CSerialPort::ProcessErrorMessage(TCHAR* ErrorText)
{
TCHAR Temp[200] = { 0 };
LPVOID lpMsgBuf;
/*FormatMessageW函数解析 //这个函数是用来格式化消息字符串,就是处理消息资源的。
FormatMessageW(
_In_ DWORD dwFlags, //格式化选项,对lpSource参数值有指导作用。
_In_opt_ LPCVOID lpSource, //消息表资源来自哪里,这个值依靠dwFlags。
_In_ DWORD dwMessageId, //所需格式化消息的标识符。
_In_ DWORD dwLanguageId, //格式化消息语言标识符。
_Out_ LPWSTR lpBuffer, //一个缓冲区指针来接受格式化后的消息。
_In_ DWORD nSize, //指定了输出缓冲区的消息,以TCHARs为单位。
_In_opt_ va_list *Arguments //一个数组中的值在格式化消息中作为插入值。
);*/
FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
NULL, //这个值是消息表资源来自哪里,这个值依靠dwFlags,
GetLastError(), //所需格式化消息的标识符。
MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language
(LPTSTR)&lpMsgBuf, //一个缓冲区指针来接受格式化后的消息。
0, //这个参数指定了输出缓冲区的消息,以TCHARs为单位
NULL //一个数组中的值在格式化消息中作为插入值
);
_stprintf_s(Temp, 200, _T("WARNING: %s Failed with the following error: \n%s\nPort: %d\n"), ErrorText, (TCHAR*)lpMsgBuf, m_nPortNr);
MessageBox(NULL, Temp, _T("Application Error"), MB_ICONSTOP);
LocalFree(lpMsgBuf); //由于lpBuffer这个参数的值是FormatMessage函数动态分配的缓冲区,所以在不使用的时候要LocalFree.
}
//
// Write a character.
//写一个字符串
void CSerialPort::WriteChar(CSerialPort* port)
{
BOOL bWrite = TRUE; //写入状态位,1-可以写入,0-无法写入
BOOL bResult = TRUE; //串口通讯成功与否标志位。1-成功,0-失败
DWORD BytesSent = 0; //写入字节数
DWORD SendLen = port->m_nWriteSize; //写入数据长度
ResetEvent(port->m_hWriteEvent); //设为无信号状态
// Gain ownership of the critical section
EnterCriticalSection(&port->m_csCommunicationSync); //临界区线程锁,锁定m_csCommunicationSync
if (bWrite)
{
// Initailize variables
port->m_ov.Offset = 0; //发送文件起始偏移量
port->m_ov.OffsetHigh = 0; //发送文件高度
// 终止收发区,功能同上
PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);
bResult = WriteFile(port->m_hComm, // Handle to COMM Port
port->m_szWriteBuffer, // Pointer to message buffer in calling finction
SendLen,
//strlen((char*)port->m_szWriteBuffer), // Length of message to send
&BytesSent, //实际写入字节数 Where to store the number of bytes sent
&port->m_ov); // Overlapped structure
// deal with any error codes
if (!bResult)
{
DWORD dwError = GetLastError(); //获取写入失败原因
switch (dwError)
{
case ERROR_IO_PENDING: //正常情况,没有字符可读,操作悬挂 erroe code:997
{
// continue to GetOverlappedResults()
BytesSent = 0; //清除实际写入字节数
bWrite = FALSE; ////写入状态位
break;
}
case ERROR_ACCESS_DENIED://拒绝访问 erroe code:5
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_ACCESS_DENIED,WriteFile() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM WriteFile Error"), MB_ICONERROR);
break;
}
case ERROR_INVALID_HANDLE://打开串口失败 erroe code:6
{
port->m_hComm = INVALID_HANDLE_VALUE;
break;
}
case ERROR_BAD_COMMAND://连接过程中非法断开 erroe code:22
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_BAD_COMMAND,WriteFile() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM WriteFile Error"), MB_ICONERROR);
break;
}
default:
{
// all other error codes
port->ProcessErrorMessage(_T("WriteFile()"));
}
}
}
else
{
LeaveCriticalSection(&port->m_csCommunicationSync);//解锁临界区 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
}
} // end if(bWrite)
//异步IO操作仍在进行,需要调用GetOverlappedResult查询
if (!bWrite)
{
bWrite = TRUE;
/* GetOverlappedResult函数定义
BOOL GetOverlappedResult( //获取重叠输入输出结果
HANDLE hFile, // 串口的句柄,指向重叠操作开始时指定的OVERLAPPED结构
LPOVERLAPPED lpOverlapped, //重叠标志位
LPDWORD lpNumberOfBytesTransferred, // 指向一个32位变量,该变量的值返回实际读写操作传输的字节数。
BOOL bWait //该参数用于指定函数是否一直等到重叠操作结束。
//如果该参数为TRUE,函数直到操作结束才返回。
//如果该参数为FALSE,函数直接返回,这时如果操作没有完成,通过调用GetLastError()函数会返回ERROR_IO_INCOMPLETE。
);*/
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
&port->m_ov, // Overlapped structure
&BytesSent, // Stores number of bytes sent
TRUE); // Wait flag
LeaveCriticalSection(&port->m_csCommunicationSync);//解锁 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
// 如果写串口错误
if (!bResult)
{
port->ProcessErrorMessage(_T("GetOverlappedResults() in WriteFile()"));
}
} // end if (!bWrite)
// 验证实际发送数据和理论发送数据是否相等 Verify that the data size send equals what we tried to send
//if (BytesSent != SendLen /*strlen((char*)port->m_szWriteBuffer)*/)
//{
//TRACE(_T("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d\n"), BytesSent, _tcsclen((TCHAR*)port->m_szWriteBuffer));
//}
}
//
// Character received. Inform the owner
//接收字符
void CSerialPort::ReceiveChar(CSerialPort* port)
{
BOOL bRead = TRUE; //能否读取状态位,1-可读,0-不可读
BOOL bResult = TRUE; //串口通讯成功与否标识符
DWORD dwError = 0; //错误代码,=GetlastError()
DWORD BytesRead = 0; //实际读取到的字节数
COMSTAT comstat; //串口状态结构体
unsigned char RXBuff; //接收缓冲区
for (;;)
{
//防止死锁
if (WaitForSingleObject(port->m_hShutdownEvent, 0) == WAIT_OBJECT_0)
return;
/*WaitForSingleObject(HANDLE hHandle,DWORD dwMilliseconds)函数用来检测hHandle事件的信号状态,在某一线程中调用该函数时,线程暂时挂起,
如果在挂起的dwMilliseconds毫秒内,线程所等待的对象变为有信号状态,则该函数立即返回;
如果时间已经到达dwMilliseconds毫秒,但hHandle所指向的对象还没有变成有信号状态,函数照样返回*/
// Gain ownership of the comm port critical section.
// This process guarantees no other part of this program
// is using the port object.
EnterCriticalSection(&port->m_csCommunicationSync);//临界区线程锁,锁定m_csCommunicationSync
// ClearCommError() will update the COMSTAT structure and clear any other errors.
//更新COMSTAT
bResult = ClearCommError(port->m_hComm, &dwError, &comstat);
/*BOOL ClearCommError( //此函数清除硬件的通讯错误以及获取通讯设备的当前状态
HANDLE hFile, //由CreateFile函数返回指向已打开串行口的句柄
LPDWORD lpErrors, //错误类型
LPCOMSTAT lpStat //返回设备状态的控制块COMSTAT
);*/
LeaveCriticalSection(&port->m_csCommunicationSync);//解锁 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
// start forever loop. I use this type of loop because I
// do not know at runtime how many loops this will have to
// run. My solution is to start a forever loop and to
// break out of it when I have processed all of the
// data available. Be careful with this approach and
// be sure your loop will exit.
// My reasons for this are not as clear in this sample
// as it is in my production code, but I have found this
// solutiion to be the most efficient way to do this.
//所有字符均被读出,中断循环
if (comstat.cbInQue == 0) //comstat.cbInQue输入缓冲区中的字节数,cbOutQue输出缓冲区中的字节数
{
// break out when all bytes have been read
break;
}
EnterCriticalSection(&port->m_csCommunicationSync);//临界区线程锁,锁定m_csCommunicationSync
if (bRead)
{
//读取串口,读出缓冲区中字节
bResult = ReadFile(
port->m_hComm, // Handle to COMM port
&RXBuff, // RX Buffer Pointer
1, // Read one byte
&BytesRead, // Stores number of bytes read
&port->m_ov); // pointer to the m_ov structure
// deal with the error code
/*BOOL ReadFile( //调用成功,返回非0.调用不成功,返回为0
//会设置GetLastError。如启动的是一次异步读操作,则函数会返回零值并将ERROR_IO_PENDING设置成GetLastError的结果。
//如结果不是零值,但读入的字节数小于nNumberOfBytesToRead参数指定的值,表明早已抵达了文件的结尾。
HANDLE hFile, //文件的句柄
LPVOID lpBuffer, //用于保存读入数据的一个缓冲区
DWORD nNumberOfBytesToRead, //要读入的字节数
LPDWORD lpNumberOfBytesRead, //指向实际读取字节数的指针
LPOVERLAPPED lpOverlapped //异步通信状态标识符
//如文件打开时指定了FILE_FLAG_OVERLAPPED,那么必须,用这个参数引用一个特殊的结构。
//该结构定义了一次异步读取操作。否则,应将这个参数设为NULL
);*/
//若返回错误,错误处理
if (!bResult)
{
switch (dwError = GetLastError())
{
case ERROR_IO_PENDING: //正常情况,没有字符可读,操作悬挂 erroe code:997
{
// asynchronous i/o is still in progress
// Proceed on to GetOverlappedResults();
///异步IO仍在进行
bRead = FALSE;
break;
}
case ERROR_ACCESS_DENIED://拒绝访问 erroe code:5
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_ACCESS_DENIED,ReadFile() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM ReadFile Error"), MB_ICONERROR);
break;
}
case ERROR_INVALID_HANDLE://打开串口失败 erroe code:6
{
port->m_hComm = INVALID_HANDLE_VALUE;
break;
}
case ERROR_BAD_COMMAND://连接过程中非法断开 erroe code:22
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_BAD_COMMAND,ReadFile() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM ReadFile Error"), MB_ICONERROR);
break;
}
default:
{
// Another error has occured. Process this error.
port->ProcessErrorMessage(_T("ReadFile()"));
break;
//return;//防止读写数据时,串口非正常断开导致死循环一直执行。 与上面添加防死锁的代码差不多
}
}
}
else//ReadFile返回TRUE
{
// ReadFile() returned complete. It is not necessary to call GetOverlappedResults()
bRead = TRUE;
}
} // close if (bRead)
//如果串口不可读,获取原因
//异步IO操作仍在进行,需要调用GetOverlappedResult查询
if (!bRead)
{
bRead = TRUE;
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
&port->m_ov, // Overlapped structure
&BytesRead, // Stores number of bytes read
TRUE); // Wait flag
// deal with the error code
if (!bResult)
{
port->ProcessErrorMessage(_T("GetOverlappedResults() in ReadFile()"));
}
} // close if (!bRead)
LeaveCriticalSection(&port->m_csCommunicationSync);//解锁 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
// notify parent that a byte was received
//避免线程互相等待,产生死锁,使用PostMessage()代替SendMessage()
PostMessage(port->m_pOwner, Wm_SerialPort_RXCHAR, (WPARAM)RXBuff, (LPARAM)port->m_nPortNr); //绑定消息响应函数
//::SendMessage((port->m_pOwner), Wm_SerialPort_RXCHAR, (WPARAM) RXBuff, (LPARAM) port->m_nPortNr);
} // end forever loop
}
//
// str received. Inform the owner
//接收字符串
void CSerialPort::ReceiveStr(CSerialPort* port)
{
BOOL bRead = TRUE; //能否读取状态位,1-可读,0-不可读
BOOL bResult = TRUE; //串口通讯成功与否标识符
DWORD dwError = 0; //错误代码,dwError=GEtlastError();
DWORD BytesRead = 0; //实际读取到的字节数
COMSTAT comstat; //串口状态结构体
serialPortInfo commInfo; //传递串口状态位,包含 portNr串口号,bytesRead读取到的字节数,用于接收字符串
for (;;)
{
//防止死锁
if (WaitForSingleObject(port->m_hShutdownEvent, 0) == WAIT_OBJECT_0)
/*WaitForSingleObject(HANDLE hHandle,DWORD dwMilliseconds)函数用来检测hHandle事件的信号状态,在某一线程中调用该函数时,线程暂时挂起,
如果在挂起的dwMilliseconds毫秒内,线程所等待的对象变为有信号状态,则该函数立即返回;
如果时间已经到达dwMilliseconds毫秒,但hHandle所指向的对象还没有变成有信号状态,函数照样返回*/
return;
// Gain ownership of the comm port critical section.
// This process guarantees no other part of this program
// is using the port object.
EnterCriticalSection(&port->m_csCommunicationSync);//临界区线程锁,锁定m_csCommunicationSync
// ClearCommError() will update the COMSTAT structure and
// clear any other errors.
///更新COMSTAT
bResult = ClearCommError(port->m_hComm, &dwError, &comstat); //清除串口错误并将串口错误代码保存到dwError,串口状态保存到comstat
LeaveCriticalSection(&port->m_csCommunicationSync);//解锁 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
// start forever loop. I use this type of loop because I
// do not know at runtime how many loops this will have to
// run. My solution is to start a forever loop and to
// break out of it when I have processed all of the
// data available. Be careful with this approach and
// be sure your loop will exit.
// My reasons for this are not as clear in this sample
// as it is in my production code, but I have found this
// solutiion to be the most efficient way to do this.
//comstat.cbInQue输入缓冲区中的字节数,cbOutQue输出缓冲区中的字节数
//所有字符均被读出,中断循环。
//0xcccccccc表示串口异常了,会导致RXBuff指针初始化错误
if (comstat.cbInQue == 0 || comstat.cbInQue == 0xcccccccc) //如果串口没数据或串口异常
{
// break out when all bytes have been read
break;
}
///如果遇到'\0',那么数据会被截断,实际数据全部读取只是没有显示完全,这个时候使用memcpy才能全部获取
//RXBuff为接收缓冲区
unsigned char* RXBuff = new unsigned char[comstat.cbInQue + 1];
if (RXBuff == NULL)
{
return;
}
RXBuff[comstat.cbInQue] = '\0';//附加字符串结束符
EnterCriticalSection(&port->m_csCommunicationSync);//临界区线程锁,锁定m_csCommunicationSync
if (bRead)
{
//串口读出,读出缓冲区中字节
bResult = ReadFile(port->m_hComm, // Handle to COMM port
RXBuff, // RX Buffer Pointer
comstat.cbInQue, // Read cbInQue len byte
&BytesRead, // Stores number of bytes read
&port->m_ov); // pointer to the m_ov structure
// deal with the error code
//若返回错误,错误处理
if (!bResult)
{
switch (dwError = GetLastError())
{
case ERROR_IO_PENDING: //正常情况,没有字符可读,操作悬挂 erroe code:997
{
// asynchronous i/o is still in progress
// Proceed on to GetOverlappedResults();
//异步IO仍在进行
bRead = FALSE;
break;
}
case ERROR_ACCESS_DENIED://拒绝访问 erroe code:5
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_ACCESS_DENIED,ReadFile() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM ReadFile Error"), MB_ICONERROR);
break;
}
case ERROR_INVALID_HANDLE://打开串口失败 erroe code:6
{
port->m_hComm = INVALID_HANDLE_VALUE;
break;
}
case ERROR_BAD_COMMAND://连接过程中非法断开 erroe code:22
{
port->m_hComm = INVALID_HANDLE_VALUE;
TCHAR Temp[200] = { 0 };
_stprintf_s(Temp, 200, _T("COM%d ERROR_BAD_COMMAND,ReadFile() Error Code:%d"), port->m_nPortNr, GetLastError());
MessageBox(NULL, Temp, _T("COM ReadFile Error"), MB_ICONERROR);
break;
}
default:
{
// Another error has occured. Process this error.
port->ProcessErrorMessage(_T("ReadFile()"));
break;
//return;///防止读写数据时,串口非正常断开导致死循环一直执行。与上面liquanhai添加防死锁的代码差不多
}
}
}
else//ReadFile成功,返回TRUE
{
// ReadFile() returned complete. It is not necessary to call GetOverlappedResults()
bRead = TRUE;
}
} // close if (bRead)
//异步IO操作仍在进行,需要调用GetOverlappedResult查询
//如果不能读取,则获取原因
if (!bRead)
{
bRead = TRUE;
bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
&port->m_ov, // Overlapped structure
&BytesRead, // Stores number of bytes read
TRUE); // Wait flag
// deal with the error code
if (!bResult)
{
port->ProcessErrorMessage(_T("GetOverlappedResults() in ReadFile()"));
}
} // close if (!bRead)
LeaveCriticalSection(&port->m_csCommunicationSync);//解锁 到EnterCriticalSection之间代码资源已经释放了,其他线程可以进行操作
commInfo.portNr = port->m_nPortNr;
commInfo.bytesRead = BytesRead;
// notify parent that some byte was received
::SendMessage((port->m_pOwner), Wm_SerialPort_RXSTR, (WPARAM)RXBuff, (LPARAM)&commInfo); //绑定串口响应函数
//释放
delete[] RXBuff; //释放RXBuff
RXBuff = NULL;
} // end forever loop
}
//
// Return the device control block
//
DCB CSerialPort::GetDCB()
{
return m_dcb; //返回DCB设置状态
}
//
// Return the communication event masks
//
DWORD CSerialPort::GetCommEvents()
{
return m_dwCommEvents; //获取通信口通信事件,例如EV_RXCHAR,EV_CTS, EV_DSR ,EV_RING等等。
}
//
// Return the output buffer size
//返回输出缓冲区大小
DWORD CSerialPort::GetWriteBufferSize()
{
return m_nWriteBufferSize;
}
//检测串口是否打开
BOOL CSerialPort::IsOpen()
{
return m_hComm != NULL && m_hComm != INVALID_HANDLE_VALUE;//m_hComm增加INVALID_HANDLE_VALUE的情况
}
//关闭串口函数
void CSerialPort::ClosetoPort()
{
MSG message;
//增加线程挂起判断,解决由于线程挂起导致串口关闭死锁的问题
if (IsThreadSuspend(m_Thread))
{
ResumeThread(m_Thread);
}
MessageBox(NULL, _T("1"), _T("COM ReadFile Error"), MB_ICONERROR);
//串口句柄无效则清除句柄
if (m_hComm == INVALID_HANDLE_VALUE)
{
CloseHandle(m_hComm);
m_hComm = NULL;
return;
}
MessageBox(NULL, _T("2"), _T("COM ReadFile Error"), MB_ICONERROR);
do
{
SetEvent(m_hShutdownEvent); //启动 关闭消息响应事件
MessageBox(NULL, _T("3"), _T("COM ReadFile Error"), MB_ICONERROR);
//防止死锁
if (::PeekMessage(&message, m_pOwner, 0, 0, PM_REMOVE)) //提取消息响应事件
{
::TranslateMessage(&message);
::DispatchMessage(&message);
}
} while (m_bThreadAlive); //若监视线程启用
// if the port is still opened: close it
//若串口打开则关闭串口
if (m_hComm != NULL)
{
CloseHandle(m_hComm);
m_hComm = NULL;
}
MessageBox(NULL, _T("4"), _T("COM ReadFile Error"), MB_ICONERROR);
// Close Handles
//关闭句柄,同上
if (m_hShutdownEvent != NULL) //关闭 ShutdownEvent
{
ResetEvent(m_hShutdownEvent);
}
if (m_ov.hEvent != NULL)
{
ResetEvent(m_ov.hEvent); //关闭窗口响应Event
}
if (m_hWriteEvent != NULL)
{
ResetEvent(m_hWriteEvent); //关闭写Event
MessageBox(NULL, _T("5"), _T("COM ReadFile Error"), MB_ICONERROR);
//CloseHandle(m_hWriteEvent);//开发者反映,这里会导致多个串口工作时,重新打开串口异常
}
MessageBox(NULL, _T("6"), _T("COM ReadFile Error"), MB_ICONERROR);
if (m_szWriteBuffer != NULL) //释放缓冲区
{
delete[] m_szWriteBuffer;
m_szWriteBuffer = NULL;
}
}
//写入char数组
void CSerialPort::WriteToPort(char* string, size_t n)
{
assert(m_hComm != 0); //串口必须打开成功
memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer)); /*void *memset(void *s, int ch, size_t n);
将s中当前位置后面的n个字节用 ch 替换并返回 s 。*/
memcpy(m_szWriteBuffer, string, n); /*void *memcpy(void *destin, void *source, unsigned n);
函数的功能是从源source中拷贝n个字节到目标destin中。*/
m_nWriteSize = n;
// set event for write
SetEvent(m_hWriteEvent); //触发WriteEvent事件,开始进行串口写入
}
//写入BYTE数组
void CSerialPort::WriteToPort(BYTE* Buffer, size_t n)
{
assert(m_hComm != 0); //串口必须打开成功
memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer)); //初始化写缓冲
memcpy(m_szWriteBuffer, Buffer, n); //转移数据到写缓冲区
/*另一种转换方式
int i;
for(i=0; i<n; i++)
{
m_szWriteBuffer[i] = Buffer[i];
}
*/
m_nWriteSize = n;
// set event for write
SetEvent(m_hWriteEvent);
}
//查询注册表的串口号,将值存于数组中
//
void CSerialPort::QueryKey(HKEY hKey)
{
#define MAX_KEY_LENGTH 255
#define MAX_VALUE_NAME 16383
// TCHAR achKey[MAX_KEY_LENGTH]; // buffer for subkey name
// DWORD cbName; // size of name string
TCHAR achClass[MAX_PATH] = TEXT(""); // buffer for class name
DWORD cchClassName = MAX_PATH; // size of class string
DWORD cSubKeys = 0; // number of subkeys
DWORD cbMaxSubKey; // longest subkey size
DWORD cchMaxClass; // longest class string
DWORD cValues; // number of values for key
DWORD cchMaxValue; // longest value name
DWORD cbMaxValueData; // longest value data
DWORD cbSecurityDescriptor; // size of security descriptor
FILETIME ftLastWriteTime; // last write time
DWORD i, retCode;
TCHAR achValue[MAX_VALUE_NAME];
DWORD cchValue = MAX_VALUE_NAME;
// Get the class name and the value count.
retCode = RegQueryInfoKey(
hKey, // key handle
achClass, // buffer for class name
&cchClassName, // size of class string
NULL, // reserved
&cSubKeys, // number of subkeys
&cbMaxSubKey, // longest subkey size
&cchMaxClass, // longest class string
&cValues, // number of values for this key
&cchMaxValue, // longest value name
&cbMaxValueData, // longest value data
&cbSecurityDescriptor, // security descriptor
&ftLastWriteTime); // last write time
for (i = 0; i<20; i++)///存放串口号的数组初始化
{
m_nComArray[i] = -1;
}
// Enumerate the key values.
if (cValues > 0) {
for (i = 0, retCode = ERROR_SUCCESS; i < cValues; i++)
{
cchValue = MAX_VALUE_NAME;
achValue[0] = '\0';
if (ERROR_SUCCESS == RegEnumValue(hKey, i, achValue, &cchValue, NULL, NULL, NULL, NULL))
{
TCHAR strDSName[10];
memset(strDSName, 0, 10);
DWORD nValueType = 0, nBuffLen = 10;
if (ERROR_SUCCESS == RegQueryValueEx(hKey, (LPCTSTR)achValue, NULL, &nValueType, (LPBYTE)strDSName, &nBuffLen))
{
int nIndex = -1;
while (++nIndex < MaxSerialPortNum)
{
if (-1 == m_nComArray[nIndex])
{
m_nComArray[nIndex] = _tstoi((TCHAR*)(strDSName + 3));
break;
}
}
}
}
}
}
else {
MessageBox(NULL, _T("No Com In This Computer!"), _T("COM Query Error"), MB_ICONERROR);
}
}
#ifdef _AFX
void CSerialPort::Hkey2ComboBox(CComboBox& m_PortNO)
{
HKEY hTestKey;
bool Flag = FALSE;
//仅是XP系统的注册表位置,其他系统根据实际情况做修改
if (ERROR_SUCCESS == RegOpenKeyEx(HKEY_LOCAL_MACHINE, TEXT("HARDWARE\\DEVICEMAP\\SERIALCOMM"), 0, KEY_READ, &hTestKey))
{
QueryKey(hTestKey);
}
RegCloseKey(hTestKey);
int i = 0;
m_PortNO.ResetContent();///刷新时,清空下拉列表内容
while (i < MaxSerialPortNum && -1 != m_nComArray[i])
{
CString szCom;
szCom.Format(_T("COM%d"), m_nComArray[i]);
m_PortNO.InsertString(i, szCom.GetBuffer(5));
++i;
Flag = TRUE;
if (Flag)///把第一个发现的串口设为下拉列表的默认值
m_PortNO.SetCurSel(0);
}
}
#endif // _AFX
这篇博客详细解析了基于C++的SerialPort.cpp和Serialport.h类文件,适用于MFC环境下的串口通信。作者在工作中使用该类实现西门子PLC的上位机控制,并对所有函数和结构体进行了注释,适合初学者参考学习。
3645

被折叠的 条评论
为什么被折叠?



