概述
本文将分四个部分,第一部分介绍MySQL中的索引,第二部分介绍MySQL中的慢查询,第三部分介绍MySQL中SQL的执行计划,第四部分介绍MySQL性能优化。
索引
索引介绍
MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。
可以得到索引的本质:索引是数据结构。使用索引的主要目的是为了优化查询速度。
索引原理
生活中随处可见索引的例子,如字典的目录,火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
索引分类
索引是在存储引擎中实现的,也就是说不同的存储引擎,会使用不同的索引。
MyISAM和InnoDB存储引擎:只支持BTREE索引, 也就是说默认使用BTREE,不能够更换。 MEMORY/HEAP存储引擎:支持HASH和BTREE索引。
索引的分类
单列索引
1)普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。即一个索引只包含单个列,一个表可以有多个单列索引。
2)唯一索引:索引列中的值必须是唯一的,但是允许为空值。
3)主键索引:是一种特殊的唯一索引,不允许有空值。
组合索引
在表中的多个字段组合上创建的索引,只有在查询条件中使用了这些字段的左边字段时,索引才会被使用,使用组合索引时遵循最左前缀集合。
全文索引
全文索引,只有在MyISAM引擎上才能使用,只能在CHAR,VARCHAR,TEXT类型字段上使用全文索引。
空间索引:不做介绍,一般使用不到。
索引的基础语法
创建索引
CREATE [UNIQUE ] INDEX indexName ON mytable(columnname(length));
ALTER TABLE 表名 ADD [UNIQUE ] INDEX [indexName] ON (columnname(length))
删除索引
DROP INDEX [indexName] ON mytable;
查看索引
SHOW INDEX FROM table_name\G
索引的存储结构
数据结构示例
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
详解B+Tree
如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
B Tree和B+ Tree的特点与区别
树的高度一般都是在2-4这个高度,树的高度直接影响IO读写的次数。
如果是三层树结构—支撑的数据可以达到20G,如果是四层树结构—支撑的数据可以达到几十T。
B Tree和B+ Tree的最大区别在于非叶子节点是否存储数据的问题。B Tree是非叶子节点和叶子节点都会存储数据。而B+ Tree只有叶子节点才会存储数据,而且存储的数据都是在一行上,而且这些数据都是有指针指向的,也就是由顺序的。
非聚集索引
叶子节点只会存储数据行的指针,简单来说数据和索引不在一起,就是非聚集索引。
主键索引和辅助索引都会存储指针的值。
聚集索引(InnoDB)
主键索引(聚集索引)的叶子节点会存储数据行,也就是说数据和索引在一起,这就是聚集索引。
辅助索引只会存储主键值。
如果没有没有主键,则使用唯一索引建立聚集索引;如果没有唯一索引,MySQL会按照一定规则创建聚集索引。
MyISAM索引实现
InnoDB索引实现
建索引的几大原则
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。
2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。
3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录。
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)。
5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。