Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
1, The left subtree of a node contains only nodes with keys less than the node's key.
2, The right subtree of a node contains only nodes with keys greater than the node's key.
3, Both the left and right subtrees must also be binary search trees.
分析:
性质已经描述清楚了,换成递归思维就是:
1,左孩子值小于当前值;
2,右孩子值大于当前值;
3,左子树全部值小于当前值;
4,右子树全部值大于当前值。
前两条好满足,后两条怎么办?
可以维持两个边界,某棵子树的所有节点应该在这个范围里,否则,应该返回false.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isValidBST(TreeNode root) {
return isValidBST(root, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public boolean isValidBST(TreeNode node, int min, int max){
if(node == null)
return true;
if(node.val>min && node.val<max && isValidBST(node.left, min, node.val)
&& isValidBST(node.right, node.val, max) )
return true;
else
return false;
}
}
本文介绍了一种判断二叉树是否为有效二叉搜索树的方法。通过递归方式检查每个节点及其子树,确保所有左子节点的值小于父节点而所有右子节点的值大于父节点,并且整个过程保持在给定的最小和最大值范围内。
3202

被折叠的 条评论
为什么被折叠?



