Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
解题思路:
用线段树求逆序对。只需要求出第一组逆序对就能推出移项之后的逆序对。假设一组序列有n个元素,元素包含0 ~ n - 1,未移项时逆序对有m组,第一个元素为a,那么当第一个元素移到最后时,比第一个元素小的元素都失去了这组逆序对,所以少了c组逆序对,而比第一个元素大的元素都多了一组逆序对,所以多了 n - 1 - c。因此移项一次项后的逆序对为m - c + (n - 1 - c)组。通过这个公式不断递推即可求得每次移项后的逆序对个数,从而求出最小的个数。
AC代码:
#include <iostream>
#include <cstdio>
using namespace std;
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
const int maxn = 5005;
int sum[maxn << 2];
void PushUp(int rt)
{
sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
void build(int l, int r, int rt)
{
sum[rt] = 0;
if(l == r)
return;
int m = (l + r) >> 1;
build(lson);
build(rson);
PushUp(rt);
}
void update(int p, int l, int r, int rt)
{
if(l == r)
{
sum[rt] ++;
return;
}
int m = (l + r) >> 1;
if(p <= m)
update(p, lson);
else
update(p, rson);
PushUp(rt);
}
int query(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R)
return sum[rt];
int m = (l + r) >> 1;
int ret = 0;
if(L <= m)
ret += query(L, R, lson);
if(m < R)
ret += query(L, R, rson);
return ret;
}
int main()
{
int n, a[maxn], sum, ans;
while(scanf("%d", &n) != EOF)
{
sum = 0;
build(0, n - 1, 1);
for(int i = 0; i < n; i++)
{
scanf("%d", &a[i]);
sum += query(a[i] + 1, n - 1, 0, n - 1, 1);
update(a[i], 0, n - 1, 1);
}
ans = sum;
for(int i = 0; i < n - 1; i++)
{
sum += n - 1 - 2 * a[i];
ans = min(ans, sum);
}
printf("%d\n", ans);
}
return 0;
}