About Dedicated and Shared Server Processes

本文探讨了Oracle数据库中专用与共享服务器进程的工作原理及配置方法。共享服务器进程通过减少进程数量来提高资源利用率,而专用服务器进程则适用于特定场景如批处理作业等。

一句话, shared server 就是为了省 SGA.


About Dedicated and Shared Server Processes

Oracle Database creates server processes to handle the requests of user processes connected to an instance. A server process can be either of the following:

  • A dedicated server process , which services only one user process

  • A shared server process , which can service multiple user processes

Your database is always enabled to allow dedicated server processes, but you must specifically configure and enable shared server by setting one or more initialization parameters.

Dedicated Server Processes

Figure 4-1, "Oracle Database Dedicated Server Processes" illustrates how dedicated server processes work. In this diagram two user processes are connected to the database through dedicated server processes.

In general, it is better to be connected through a dispatcher and use a shared server process. This is illustrated in Figure 4-2, "Oracle Database Shared Server Processes" . A shared server process can be more efficient because it keeps the number of processes required for the running instance low.

In the following situations, however, users and administrators should explicitly connect to an instance using a dedicated server process:

  • To submit a batch job (for example, when a job can allow little or no idle time for the server process)

  • To use Recovery Manager (RMAN) to back up, restore, or recover a database

To request a dedicated server connection when Oracle Database is configured for shared server, users must connect using a net service name that is configured to use a dedicated server. Specifically, the net service name value should include the SERVER=DEDICATED clause in the connect descriptor.

See Also:

Oracle Database Net Services Administrator's Guide for more information about requesting a dedicated server connection

Figure 4-1 Oracle Database Dedicated Server Processes

Description of Figure 4-1 follows
Description of "Figure 4-1 Oracle Database Dedicated Server Processes"

Shared Server Processes

Consider an order entry system with dedicated server processes. A customer phones the order desk and places an order, and the clerk taking the call enters the order into the database. For most of the transaction, the clerk is on the telephone talking to the customer. A server process is not needed during this time, so the server process dedicated to the clerk's user process remains idle. The system is slower for other clerks entering orders, because the idle server process is holding system resources.

Shared server architecture eliminates the need for a dedicated server process for each connection (see Figure 4-2 ).

Figure 4-2 Oracle Database Shared Server Processes

Description of Figure 4-2 follows
Description of "Figure 4-2 Oracle Database Shared Server Processes"

In a shared server configuration, client user processes connect to a dispatcher. The dispatcher can support multiple client connections concurrently. Each client connection is bound to a virtual circuit , which is a piece of shared memory used by the dispatcher for client database connection requests and replies. The dispatcher places a virtual circuit on a common queue when a request arrives.

An idle shared server process picks up the virtual circuit from the common queue, services the request, and relinquishes the virtual circuit before attempting to retrieve another virtual circuit from the common queue. This approach enables a small pool of server processes to serve a large number of clients. A significant advantage of shared server architecture over the dedicated server model is the reduction of system resources, enabling the support of an increased number of users.

For even better resource management, shared server can be configured for connection pooling . Connection pooling lets a dispatcher support more users by enabling the database server to time-out protocol connections and to use those connections to service an active session. Further, shared server can be configured for session multiplexing , which combines multiple sessions for transmission over a single network connection in order to conserve the operating system's resources.

Shared server architecture requires Oracle Net Services. User processes targeting the shared server must connect through Oracle Net Services, even if they are on the same machine as the Oracle Database instance.

{ // DHCPv4 configuration starts here. This section will be read by DHCPv4 server // and will be ignored by other components. "Control-agent": { "http-host": "localhost", "http-port": 8000 }, "Dhcp4": { "interfaces-config": { "interfaces": [ "enp3s0f0" ] }, "control-socket": { "socket-type": "unix", "socket-name": "/path/to/kea4-ctrl-socket" }, } "Dhcp4": { // Add names of your network interfaces to listen on. "interfaces-config": { // See section 8.2.4 for more details. You probably want to add just // interface name (e.g. "eth0" or specific IPv4 address on that // interface name (e.g. "eth0/192.0.2.1"). "interfaces": ["enp3s0f1/192.168.100.1"] // Kea DHCPv4 server by default listens using raw sockets. This ensures // all packets, including those sent by directly connected clients // that don't have IPv4 address yet, are received. However, if your // traffic is always relayed, it is often better to use regular // UDP sockets. If you want to do that, uncomment this line: // "dhcp-socket-type": "udp" }, // Kea supports control channel, which is a way to receive management // commands while the server is running. This is a Unix domain socket that // receives commands formatted in JSON, e.g. config-set (which sets new // configuration), config-reload (which tells Kea to reload its // configuration from file), statistic-get (to retrieve statistics) and many // more. For detailed description, see Sections 8.8, 16 and 15. "control-socket": { "socket-type": "unix", "socket-name": "kea4-ctrl-socket" }, // Use Memfile lease database backend to store leases in a CSV file. // Depending on how Kea was compiled, it may also support SQL databases // (MySQL and/or PostgreSQL). Those database backends require more // parameters, like name, host and possibly user and password. // There are dedicated examples for each backend. See Section 7.2.2 "Lease // Storage" for details. "lease-database": { // Memfile is the simplest and easiest backend to use. It's an in-memory // C++ database that stores its state in CSV file. "type": "memfile", "lfc-interval": 3600 }, // Kea allows storing host reservations in a database. If your network is // small or you have few reservations, it's probably easier to keep them // in the configuration file. If your network is large, it's usually better // to use database for it. To enable it, uncomment the following: // "hosts-database": { // "type": "mysql", // "name": "kea", // "user": "kea", // "password": "1234", // "host": "localhost", // "port": 3306 // }, // See Section 7.2.3 "Hosts storage" for details. // Setup reclamation of the expired leases and leases affinity. // Expired leases will be reclaimed every 10 seconds. Every 25 // seconds reclaimed leases, which have expired more than 3600 // seconds ago, will be removed. The limits for leases reclamation // are 100 leases or 250 ms for a single cycle. A warning message // will be logged if there are still expired leases in the // database after 5 consecutive reclamation cycles. // If both "flush-reclaimed-timer-wait-time" and "hold-reclaimed-time" are // not 0, when the client sends a release message the lease is expired // instead of being deleted from the lease storage. "expired-leases-processing": { "reclaim-timer-wait-time": 10, "flush-reclaimed-timer-wait-time": 25, "hold-reclaimed-time": 3600, "max-reclaim-leases": 100, "max-reclaim-time": 250, "unwarned-reclaim-cycles": 5 }, // Global timers specified here apply to all subnets, unless there are // subnet specific values defined in particular subnets. "renew-timer": 900, "rebind-timer": 60, "valid-lifetime": 3600, // Many additional parameters can be specified here: // - option definitions (if you want to define vendor options, your own // custom options or perhaps handle standard options // that Kea does not support out of the box yet) // - client classes // - hooks // - ddns information (how the DHCPv4 component can reach a DDNS daemon) // // Some of them have examples below, but there are other parameters. // Consult Kea User's Guide to find out about them. // These are global options. They are going to be sent when a client // requests them, unless overwritten with values in more specific scopes. // The scope hierarchy is: // - global (most generic, can be overwritten by class, subnet or host) // - class (can be overwritten by subnet or host) // - subnet (can be overwritten by host) // - host (most specific, overwrites any other scopes) // // Not all of those options make sense. Please configure only those that // are actually useful in your network. // // For a complete list of options currently supported by Kea, see // Section 7.2.8 "Standard DHCPv4 Options". Kea also supports // vendor options (see Section 7.2.10) and allows users to define their // own custom options (see Section 7.2.9). "option-data": [ // When specifying options, you typically need to specify // one of (name or code) and data. The full option specification // covers name, code, space, csv-format and data. // space defaults to "dhcp4" which is usually correct, unless you // use encapsulate options. csv-format defaults to "true", so // this is also correct, unless you want to specify the whole // option value as long hex string. For example, to specify // domain-name-servers you could do this: // { // "name": "domain-name-servers", // "code": 6, // "csv-format": "true", // "space": "dhcp4", // "data": "192.0.2.1, 192.0.2.2" // } // but it's a lot of writing, so it's easier to do this instead: { "name": "domain-name-servers", "data": "192.0.2.1, 192.0.2.2" }, // Typically people prefer to refer to options by their names, so they // don't need to remember the code names. However, some people like // to use numerical values. For example, option "domain-name" uses // option code 15, so you can reference to it either by // "name": "domain-name" or "code": 15. { "code": 15, "data": "example.org" }, // Domain search is also a popular option. It tells the client to // attempt to resolve names within those specified domains. For // example, name "foo" would be attempted to be resolved as // foo.mydomain.example.com and if it fails, then as foo.example.com { "name": "domain-search", "data": "mydomain.example.com, example.com" }, // String options that have a comma in their values need to have // it escaped (i.e. each comma is preceded by two backslashes). // That's because commas are reserved for separating fields in // compound options. At the same time, we need to be conformant // with JSON spec, that does not allow "\,". Therefore the // slightly uncommon double backslashes notation is needed. // Legal JSON escapes are \ followed by "\/bfnrt character // or \u followed by 4 hexadecimal numbers (currently Kea // supports only \u0000 to \u00ff code points). // CSV processing translates '\\' into '\' and '\,' into ',' // only so for instance '\x' is translated into '\x'. But // as it works on a JSON string value each of these '\' // characters must be doubled on JSON input. { "name": "boot-file-name", "data": "EST5EDT4\\,M3.2.0/02:00\\,M11.1.0/02:00" }, // Options that take integer values can either be specified in // dec or hex format. Hex format could be either plain (e.g. abcd) // or prefixed with 0x (e.g. 0xabcd). { "name": "default-ip-ttl", "data": "0xf0" } // Note that Kea provides some of the options on its own. In particular, // it sends IP Address lease type (code 51, based on valid-lifetime // parameter, Subnet mask (code 1, based on subnet definition), Renewal // time (code 58, based on renew-timer parameter), Rebind time (code 59, // based on rebind-timer parameter). ], // Other global parameters that can be defined here are option definitions // (this is useful if you want to use vendor options, your own custom // options or perhaps handle options that Kea does not handle out of the box // yet). // You can also define classes. If classes are defined, incoming packets // may be assigned to specific classes. A client class can represent any // group of devices that share some common characteristic, e.g. Windows // devices, iphones, broken printers that require special options, etc. // Based on the class information, you can then allow or reject clients // to use certain subnets, add special options for them or change values // of some fixed fields. "client-classes": [ { // This specifies a name of this class. It's useful if you need to // reference this class. "name": "voip", // This is a test. It is an expression that is being evaluated on // each incoming packet. It is supposed to evaluate to either // true or false. If it's true, the packet is added to specified // class. See Section 12 for a list of available expressions. There // are several dozens. Section 8.2.14 for more details for DHCPv4 // classification and Section 9.2.19 for DHCPv6. "test": "substring(option[60].hex,0,6) == 'Aastra'", // If a client belongs to this class, you can define extra behavior. // For example, certain fields in DHCPv4 packet will be set to // certain values. "next-server": "192.0.2.254", "server-hostname": "hal9000", "boot-file-name": "/dev/null" // You can also define option values here if you want devices from // this class to receive special options. } ], // Another thing possible here are hooks. Kea supports a powerful mechanism // that allows loading external libraries that can extract information and // even influence how the server processes packets. Those libraries include // additional forensic logging capabilities, ability to reserve hosts in // more flexible ways, and even add extra commands. For a list of available // hook libraries, see https://gitlab.isc.org/isc-projects/kea/wikis/Hooks-available. "hooks-libraries":[ { "library": "/usr/local/lib64/kea/hooks/libdhcp_macauth.so", "parameters": { "server_ip": "10.10.10.1", "ac_ip": "10.10.10.102", "port": 5001, "shared_secret": "7a5b8c3e9f" } }, { "library": "/usr/local/lib64/kea/hooks/libdhcp_lease_cmds.so" } //{ // "library": "/usr/local/lib64/kea/hooks/libdhcp_lease_query.so" // } ], // "hooks-libraries": [ // { // // Forensic Logging library generates forensic type of audit trail // // of all devices serviced by Kea, including their identifiers // // (like MAC address), their location in the network, times // // when they were active etc. // "library": "/usr/local/lib64/kea/hooks/libdhcp_legal_log.so", // "parameters": { // "base-name": "kea-forensic4" // } // }, // { // // Flexible identifier (flex-id). Kea software provides a way to // // handle host reservations that include addresses, prefixes, // // options, client classes and other features. The reservation can // // be based on hardware address, DUID, circuit-id or client-id in // // DHCPv4 and using hardware address or DUID in DHCPv6. However, // // there are sometimes scenario where the reservation is more // // complex, e.g. uses other options that mentioned above, uses part // // of specific options or perhaps even a combination of several // // options and fields to uniquely identify a client. Those scenarios // // are addressed by the Flexible Identifiers hook application. // "library": "/usr/local/lib64/kea/hooks/libdhcp_flex_id.so", // "parameters": { // "identifier-expression": "relay4[2].hex" // } // }, // { // // the MySQL host backend hook library required for host storage. // "library": "/usr/local/lib64/kea/hooks/libdhcp_mysql.so" // } // ], // Below an example of a simple IPv4 subnet declaration. Uncomment to enable // it. This is a list, denoted with [ ], of structures, each denoted with // { }. Each structure describes a single subnet and may have several // parameters. One of those parameters is "pools" that is also a list of // structures. "subnet4": [ { // This defines the whole subnet. Kea will use this information to // determine where the clients are connected. This is the whole // subnet in your network. // Subnet identifier should be unique for each subnet. "id": 1, // This is mandatory parameter for each subnet. "subnet": "192.168.30.0/24", // Pools define the actual part of your subnet that is governed // by Kea. Technically this is optional parameter, but it's // almost always needed for DHCP to do its job. If you omit it, // clients won't be able to get addresses, unless there are // host reservations defined for them. "pools": [ { "pool": "192.168.30.10 - 192.168.30.200" } ], // This is one of the subnet selectors. Uncomment the "interface" // parameter and specify the appropriate interface name if the DHCPv4 // server will receive requests from local clients (connected to the // same subnet as the server). This subnet will be selected for the // requests received by the server over the specified interface. // This rule applies to the DORA exchanges and rebinding clients. // Renewing clients unicast their messages, and the renewed addresses // are used by the server to determine the subnet they belong to. // When this parameter is used, the "relay" parameter is typically // unused. // "interface": "eth0", // This is another subnet selector. Uncomment the "relay" parameter // and specify a list of the relay addresses. The server will select // this subnet for lease assignments when it receives queries over one // of these relays. When this parameter is used, the "interface" parameter // is typically unused. // "relay": { // "ip-addresses": [ "10.0.0.1" ] // }, // These are options that are subnet specific. In most cases, // you need to define at least routers option, as without this // option your clients will not be able to reach their default // gateway and will not have Internet connectivity. "option-data": [ { // For each IPv4 subnet you most likely need to specify at // least one router. "name": "routers", "data": "192.0.2.1" } ], // Kea offers host reservations mechanism. Kea supports reservations // by several different types of identifiers: hw-address // (hardware/MAC address of the client), duid (DUID inserted by the // client), client-id (client identifier inserted by the client) and // circuit-id (circuit identifier inserted by the relay agent). // // Kea also support flexible identifier (flex-id), which lets you // specify an expression that is evaluated for each incoming packet. // Resulting value is then used for as an identifier. // // Note that reservations are subnet-specific in Kea. This is // different than ISC DHCP. Keep that in mind when migrating // your configurations. "reservations": [ // This is a reservation for a specific hardware/MAC address. // It's a rather simple reservation: just an address and nothing // else. // { // "hw-address": "1a:1b:1c:1d:1e:1f", // "ip-address": "192.0.2.201" // }, // This is a reservation for a specific client-id. It also shows // the this client will get a reserved hostname. A hostname can // be defined for any identifier type, not just client-id. { "client-id": "01:11:22:33:44:55:66", "ip-address": "192.168.30.202", "hostname": "special-snowflake" }, // The third reservation is based on DUID. This reservation defines // a special option values for this particular client. If the // domain-name-servers option would have been defined on a global, // subnet or class level, the host specific values take preference. { "duid": "01:02:03:04:05", "ip-address": "192.168.30.203", "option-data": [ { "name": "domain-name-servers", "data": "10.1.1.202, 10.1.1.203" } ] }, // The fourth reservation is based on circuit-id. This is an option // inserted by the relay agent that forwards the packet from client // to the server. In this example the host is also assigned vendor // specific options. // // When using reservations, it is useful to configure // reservations-global, reservations-in-subnet, // reservations-out-of-pool (subnet specific parameters) // and host-reservation-identifiers (global parameter). { "client-id": "01:12:23:34:45:56:67", "ip-address": "192.168.30.204", "option-data": [ { "name": "vivso-suboptions", "data": "4491" }, { "name": "tftp-servers", "space": "vendor-4491", "data": "10.1.1.202, 10.1.1.203" } ] }, // This reservation is for a client that needs specific DHCPv4 // fields to be set. Three supported fields are next-server, // server-hostname and boot-file-name { "client-id": "01:0a:0b:0c:0d:0e:0f", "ip-address": "192.168.30.205", "next-server": "192.168.30.1", "server-hostname": "hal9000", "boot-file-name": "/dev/null" }, // This reservation is using flexible identifier. Instead of // relying on specific field, sysadmin can define an expression // similar to what is used for client classification, // e.g. substring(relay[0].option[17],0,6). Then, based on the // value of that expression for incoming packet, the reservation // is matched. Expression can be specified either as hex or // plain text using single quotes. // // Note: flexible identifier requires flex_id hook library to be // loaded to work. { "flex-id": "'s0mEVaLue'", "ip-address": "192.168.30.206" } // You can add more reservations here. ] // You can add more subnets there. }, { "subnet": "192.168.100.0/24", "id":100, "pools": [ { "pool": "192.168.100.100 - 192.168.100.200" } ], "option-data": [ { "name": "routers", "data": "192.168.100.2" }, { "name": "domain-name-servers", "data": "8.8.8.8, 8.8.4.4" } ] }, { "subnet": "192.168.10.0/24", "id":10, "pools": [ { "pool": "192.168.10.100 - 192.168.10.200" } ], "relay": { "ip-addresses": ["192.168.10.1"] }, "option-data": [ { "name": "routers", "data": "192.168.10.1" }, { "name": "domain-name-servers", "data": "114.114.114.114,8.8.8.8" } ] }, { "id":20, "subnet": "192.168.20.0/24", "pools": [ { "pool": "192.168.20.100 - 192.168.20.200" } ], "relay": { "ip-addresses": ["192.168.20.1"] }, "option-data": [ { "name": "routers", "data": "192.168.20.1" }, { "name": "domain-name-servers", "data": "114.114.114.114, 8.8.4.4" } ] } ], // There are many, many more parameters that DHCPv4 server is able to use. // They were not added here to not overwhelm people with too much // information at once. // Logging configuration starts here. Kea uses different loggers to log various // activities. For details (e.g. names of loggers), see Chapter 18. "loggers": [ { // This section affects kea-dhcp4, which is the base logger for DHCPv4 // component. It tells DHCPv4 server to write all log messages (on // severity INFO or more) to a file. "name": "kea-dhcp4", "output-options": [ { // Specifies the output file. There are several special values // supported: // - stdout (prints on standard output) // - stderr (prints on standard error) // - syslog (logs to syslog) // - syslog:name (logs to syslog using specified name) // Any other value is considered a name of the file "output": "kea-dhcp4.log" // Shorter log pattern suitable for use with systemd, // avoids redundant information // "pattern": "%-5p %m\n", // This governs whether the log output is flushed to disk after // every write. // "flush": false, // This specifies the maximum size of the file before it is // rotated. // "maxsize": 1048576, // This specifies the maximum number of rotated files to keep. // "maxver": 8 } ], // This specifies the severity of log messages to keep. Supported values // are: FATAL, ERROR, WARN, INFO, DEBUG "severity": "INFO", // If DEBUG level is specified, this value is used. 0 is least verbose, // 99 is most verbose. Be cautious, Kea can generate lots and lots // of logs if told to do so. "debuglevel": 0 } ] } } 查看以上配置文件查看看dhcp配置接口开放配置有什么问题及语法错误并修复
最新发布
08-15
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值