[tarjan模板] 需要几个点覆盖整张图+需要增加几条边 使全图强联通

本文探讨了一种算法,用于解决学校网络中软件分发的优化问题。算法旨在找到最少的学校数量,确保软件能够通过既定协议到达网络中的所有学校,并计算为达到任意学校发送软件即可覆盖全网的目标所需的最小扩展次数。

A - Network of Schools

 POJ - 1236 

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

#include <iostream>
#include <cstdio>
#include <cmath>
#include <stack>
#include <cstring>
#define ll long long
#define db double
using namespace std;

const int mn = 103;

int kuai, belong[mn], in[mn], out[mn];

int ecnt, to[mn * mn], nx[mn * mn], fr[mn];
void addedge(int u, int v)
{
	++ecnt;
	to[ecnt] = v;
	nx[ecnt] = fr[u];
	fr[u] = ecnt;
}


/// Tarjan 模板
int idx, low[mn], dfn[mn];
bool insta[mn];
stack<int> sta;
void tarjan(int u)
{
	low[u] = dfn[u] = ++idx;
	sta.push(u);
	insta[u] = 1;
	for (int i = fr[u]; i != -1; i = nx[i])
	{
		int v = to[i];
		if (!dfn[v])
		{
			tarjan(v);
			low[u] = min(low[u], low[v]);
		}
		if (dfn[v] && insta[v])
			low[u] = min(low[u], dfn[v]);
	}
	if (low[u] == dfn[u])
	{
		++kuai;
		int v;
		do
		{
			v = sta.top();
			insta[v] = 0;
			belong[v] = kuai;
			sta.pop();
		}
		while (v != u);
	}
}
///


int main()
{
	memset(fr, -1, sizeof fr);

	int n;
	scanf("%d", &n);

	for (int i = 1; i <= n; i++)
	{
		while (1)
		{
			int t;
			scanf("%d", &t);
			if (t == 0)
				break;
			addedge(i, t);
		}
	}

	for (int i = 1; i <= n; i++)
	{
		if (!dfn[i])
			tarjan(i);
	}
	
	for (int i = 1; i <= n; i++)
	{
		for (int j = fr[i]; j != -1; j = nx[j])
		{
			int u = belong[i], v = belong[to[j]];
			if (u != v)
				out[u]++, in[v]++;
		}
	}
	
	int ans1 = 0, ans2 = 0;
	for (int i = 1; i <= kuai; i++)
	{
		if (in[i] == 0)
			ans1++;
		if (out[i] == 0)
			ans2++;
	}
	if (kuai == 1)
		printf("1\n0\n");
	else
		printf("%d\n%d\n", ans1, max(ans1, ans2));

	return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值