在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。
现在,我们查看这些立方体在 xy、yz 和 zx 平面上的投影。
投影就像影子,将三维形体映射到一个二维平面上。
在这里,从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回所有三个投影的总面积。
示例 1:
输入:[[2]]
输出:5
示例 2:
输入:[[1,2],[3,4]]
输出:17
解释:
这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 3:
输入:[[1,0],[0,2]]
输出:8
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:14
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:21
提示:
1 <= grid.length = grid[0].length <= 500 <= grid[i][j] <= 50

博客围绕在网格中放置与 x,y,z 三轴对齐的立方体展开,介绍每个值代表单元格上正方体的堆叠数量,提及查看立方体在 xy、yz 和 zx 平面上的投影,即三维形体映射到二维平面的‘影子’,并要计算所有三个投影的总面积,还给出多个示例。
772

被折叠的 条评论
为什么被折叠?



