[leetcode] Minimum Path Sum

本文介绍如何使用动态规划解决最小路径和问题,通过构建二维数组并利用递推公式,实现从起点到终点的最优路径查找。

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

思路很简单,DP,f[i][j] = min(f[i][j-1], f[i-1][j]) + grid[i][j] 

class Solution:
    # @param grid, a list of lists of integers
    # @return an integer
    def minPathSum(self, grid):
        m = len(grid)
        n = len(grid[0])
        f = [[0 for col in range(n)] for row in range(m)]
        f[0][0] = grid[0][0]
        for i in range(1,n):
            f[0][i] = f[0][i - 1] + grid[0][i]
        for i in range(1,m):
            f[i][0] = f[i - 1][0] + grid[i][0]
        for i in range(1,m):
            for j in range(1,n):
                f[i][j] = min(f[i][j-1], f[i-1][j]) + grid[i][j]
        return f[m-1][n-1]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值