二维RMQ_Cornfields SCU - 2154

本文介绍了一种解决二维范围最大值查询(RMQ)问题的预处理算法,该算法适用于固定大小的查询窗口,通过对原始数据进行预处理,可以在O(1)时间内回答每个查询。文章详细解释了算法原理、数据结构的设计以及实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个题scu的测试比较好

用printf,注意数组的大小

FJ has decided to grow his own corn hybrid in order to help the cows make the best possible milk. To that end, he's looking to build the cornfield on the flattest piece of land he can find.


FJ has, at great expense, surveyed his square farm of N x N hectares (1 <= N <= 250). Each hectare has an integer elevation (0 <= elevation <= 250) associated with it.

FJ will present your program with the elevations and a set of K (1 <= K <= 100,000) queries of the form "in this B x B submatrix, what is the maximum and minimum elevation?". The integer B (1 <= B <= N) is the size of one edge of the square cornfield and is a constant for every inquiry. Help FJ find the best place to put his cornfield.

Input * Line 1: Three space-separated integers: N, B, and K.

* Lines 2..N+1: Each line contains N space-separated integers. Line 2 represents row 1; line 3 represents row 2, etc. The first integer on each line represents column 1; the second integer represents column 2; etc.

* Lines N+2..N+K+1: Each line contains two space-separated integers representing a query. The first integer is the top row of the query; the second integer is the left column of the query. The integers are in the range 1..N-B+1.
Output * Lines 1..K: A single integer per line representing the difference between the max and the min in each query.
Sample Input
5 3 1
5 1 2 6 3
1 3 5 2 7
7 2 4 6 1
9 9 8 6 5
0 6 9 3 9
1 2
Sample Output
5


#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define all(x) begin(x),end(x)
ll rd(){
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}


//二维RMQ,预处理复杂度 n*m*log*(n)*log(m)
//数组下标从 1 开始

const int maxn=256;
const int max_log=9;
int val[maxn][maxn];
int dp[maxn][maxn][max_log][max_log];//最大值
int dp2[maxn][maxn][max_log][max_log];
int mm[maxn]; //二进制位数减一
void initRMQ(int n,int m)
{
    mm[0] = -1;
    for(int i = 1; i <= 305; i++)
        mm[i] = ((i&(i-1))==0)?mm[i-1]+1:mm[i-1];
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++){
            dp[i][j][0][0] = val[i][j];
            dp2[i][j][0][0] = val[i][j];
        }
    for(int ii = 0; ii <= mm[n]; ii++)
        for(int jj = 0; jj <= mm[m]; jj++)
            if(ii+jj)
                for(int i = 1; i + (1<<ii) - 1 <= n; i++)
                for(int j = 1; j + (1<<jj) - 1 <= m; j++)
                {
                    if(ii){
                        dp[i][j][ii][jj]= max(dp[i][j][ii-1][jj],dp[i+(1<<(ii-1))][j][ii-1][jj]);
                        dp2[i][j][ii][jj]= min(dp2[i][j][ii-1][jj],dp2[i+(1<<(ii-1))][j][ii-1][jj]);
                    }
                    else{
                        dp[i][j][ii][jj]= max(dp[i][j][ii][jj-1],dp[i][j+(1<<(jj-1))][ii][jj-1]);
                        dp2[i][j][ii][jj]= min(dp2[i][j][ii][jj-1],dp2[i][j+(1<<(jj-1))][ii][jj-1]);
                    }
                }
}
//get Min x1<=x2,y1<=y2)
int rmq(int x1,int y1,int x2,int y2)
{
    int k1 = mm[x2-x1+1];
    int k2 = mm[y2-y1+1];
    x2 = x2 - (1<<k1) + 1;
    y2 = y2 - (1<<k2) + 1;
    return max(max(dp[x1][y1][k1][k2],
                dp[x1][y2][k1][k2])
               ,max(dp[x2][y1][k1][k2]
                ,dp[x2][y2][k1][k2]));
}

int rmq2(int x1,int y1,int x2,int y2)
{
    int k1 = mm[x2-x1+1];
    int k2 = mm[y2-y1+1];
    x2 = x2 - (1<<k1) + 1;
    y2 = y2 - (1<<k2) + 1;
    return min(min(dp2[x1][y1][k1][k2],
                dp2[x1][y2][k1][k2])
               ,min(dp2[x2][y1][k1][k2]
                ,dp2[x2][y2][k1][k2]));
}

int main(){
   // freopen("in.txt","r",stdin);
   int n,b,k;
    while(~scanf("%d%d%d",&n,&b,&k)){
        b--;
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        val[i][j]=rd();
        initRMQ(n,n);
        /*
        for(int i=0;i<10;i++)
            cout<<mm[i]<<" ";
        cout<<endl;
        */
        while(k--){
            int x=rd(),y=rd();
            int a=rmq(x,y,min(x+b,n),min(y+b,n));
            int c=rmq2(x,y,min(x+b,n),min(y+b,n));
            printf("%d\n",a-c);
        }
    }
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值