书生第四期L1G6000 opencompass评测

在训练营提供的开发机上创建用于评测 conda 环境:

conda create -n opencompass python=3.10
conda activate opencompass

cd /root
git clone -b 0.3.3 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
pip install -r requirements.txt
pip install huggingface_hub==0.25.2

值得注意的是如果出现了rouge库检测不到的情况,需要先删除再安装一遍

获得测试的api:

以评测 internlm 模型为例,介绍如何评测 API 模型。

打开网站浦语官方地址 书生·浦语 获得 api key 和 api 服务地址 (也可以从第三方平台 硅基流动 获取), 在终端中运行:

export INTERNLM_API_KEY=xxxxxxxxxxxxxxxxxxxxxxx # 填入你申请的 API Key

配置模型: 在终端中运行 cd /root/opencompass/ 和 touch opencompass/configs/models/openai/puyu_api.py, 然后打开文件, 贴入以下代码:

from mmengine import read_base

with read_base():
    from ..cmmlu.cmmlu_gen_c13365 import cmmlu_datasets


# 每个数据集只取前2个样本进行评测
for d in cmmlu_datasets:
    d['abbr'] = 'demo_' + d['abbr']
    d['reader_cfg']['test_range'] = '[0:1]' # 这里每个数据集只取1个样本, 方便快速评测.

这样我们使用了 CMMLU Benchmark 的每个子数据集的 1 个样本进行评测.

完成配置后, 在终端中运行: python run.py --models puyu_api.py --datasets demo_cmmlu_chat_gen.py --debug. 预计运行10分钟后, 得到结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值