在训练营提供的开发机上创建用于评测 conda 环境:
conda create -n opencompass python=3.10
conda activate opencompass
cd /root
git clone -b 0.3.3 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
pip install -r requirements.txt
pip install huggingface_hub==0.25.2
值得注意的是如果出现了rouge库检测不到的情况,需要先删除再安装一遍
获得测试的api:
以评测 internlm 模型为例,介绍如何评测 API 模型。
打开网站浦语官方地址 书生·浦语 获得 api key 和 api 服务地址 (也可以从第三方平台 硅基流动 获取), 在终端中运行:
export INTERNLM_API_KEY=xxxxxxxxxxxxxxxxxxxxxxx # 填入你申请的 API Key
配置模型: 在终端中运行 cd /root/opencompass/
和 touch opencompass/configs/models/openai/puyu_api.py
, 然后打开文件, 贴入以下代码:
from mmengine import read_base
with read_base():
from ..cmmlu.cmmlu_gen_c13365 import cmmlu_datasets
# 每个数据集只取前2个样本进行评测
for d in cmmlu_datasets:
d['abbr'] = 'demo_' + d['abbr']
d['reader_cfg']['test_range'] = '[0:1]' # 这里每个数据集只取1个样本, 方便快速评测.
这样我们使用了 CMMLU Benchmark 的每个子数据集的 1 个样本进行评测.
完成配置后, 在终端中运行: python run.py --models puyu_api.py --datasets demo_cmmlu_chat_gen.py --debug
. 预计运行10分钟后, 得到结果: