#ifndef H_THREAD_POOL_H
#define H_THREAD_POOL_H
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
namespace std
{
#define THREADPOOL_MAX_NUM 16
class ThreadPool
{
public:
ThreadPool(size_t);
void addThread(size_t threads);
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector< std::thread > m_workers;
// the task queue
std::queue< std::function<void()> > m_tasks;
// synchronization
std::mutex m_queue_mutex;
std::condition_variable m_condition;
bool m_b_stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: m_b_stop(false)
{
addThread(threads);
}
void ThreadPool::addThread(size_t threads)
{
size_t pools = m_workers.size();
for(;pools < THREADPOOL_MAX_NUM && threads > 0;--threads)
{
m_workers.emplace_back(
[this]
{
for(;;)
{
std::function<void()> task;
{
std::unique_lock<std::mutex> lock(this->m_queue_mutex);
this->m_condition.wait(lock,
[this]{ return this->m_b_stop || !this->m_tasks.empty(); });
if(this->m_b_stop && this->m_tasks.empty())
return;
task = std::move(this->m_tasks.front());
this->m_tasks.pop();
}
task();
}
}
);
}
}
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
using return_type = typename std::result_of<F(Args...)>::type;
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(m_queue_mutex);
// don't allow enqueueing after stopping the pool
if(m_b_stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
m_tasks.emplace([task](){ (*task)(); });
}
m_condition.notify_one();
return res;
}
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(m_queue_mutex);
m_b_stop = true;
}
m_condition.notify_all();
for(std::thread &worker: m_workers)
worker.join();
}
}
#endif