kalman目标跟踪

本文详细介绍了如何使用Kalman滤波算法在视频帧中实现目标跟踪,包括初始化滤波器、预测和更新步骤,以及如何利用鼠标事件进行手动调整。通过设置状态变量和观测变量,构建状态转移矩阵和量测矩阵,并配置噪声参数,实现对目标位置的精确预测和跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(1)获取视频帧
(2)手动获取跟踪目标(鼠标事件处理)
(3)进行kalman跟踪:
     状态估计值x --> state;当前观测值z --> measurement;kalman类内成员变量transitionMatrix就是状态转移方程中的矩阵A;kalman类内成员变量measurementMatrix就是量测方程中矩阵H
     《1》初始化kalman滤波
         const int stateNum=4;  //设置状态变量(x,y,dx,dy)
         const int measureNum=2;  //设置观测变量(x,y)
         CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );/初始化kalman滤波,其返回值为kalman变量:  
         CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );  //创建4行1列的状态噪声向量
         CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//创建观测噪声向量 
         CvRNG rng = cvRNG(-1);  
         float A[stateNum][stateNum] ={//transition matrix  
                    1,0,1,0,  
                    0,1,0,1,  
                    0,0,1,0,  
                    0,0,0,1  
                   };  //状态转移矩阵
         //将状态转移矩阵赋值给kalman 
         memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));  
         //cvSetIdentity()将会把数组中除了行数与列数相等以外的所有元素的值都设置为0;行数与列数相等的元素的值都设置为1
         //设置观测矩阵就是一个2×2的单位阵,设置kalman的观测矩阵
         cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );
         //设置状态噪声  
         cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));
         //设置观测噪声  
         cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));  
         //设置kalman迭代的误差
         cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));  
         //初始化kalman的状态变量,这个初始化和图像的长宽有关Hei表示图像宽,wid表示图像的高  
         cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(Hei>Wid?Wid:Hei));  
         //字体初始化 
CvFont font; 
        cvInitFont(&font,CV_FONT_HERSHEY_PLAIN,1,1); 
     《2》kalman预测
         const CvMat* prediction=cvKalmanPredict(kalman,0);  
         //获取预测的点坐标,即和测量量相同
         CvPoint predict_pt=cvPoint((int)prediction->data.fl[0],(int)prediction->data.fl[1]);

     《3》更新量测
         从鼠标获取的位置量进行赋值
         measurement->data.fl[0]=(float)mousePosition.x;  
         measurement->data.fl[1]=(float)mousePosition.y;   
    
     《4》更新kalman相关变量  
        cvKalmanCorrect( kalman, measurement ); 
     

(4)进行相关的显示表达


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值