常用算法回顾——二分查找算法

原理

假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1。通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则在左部分进行查找,如果中间位置值小于目标值,则在右部分进行查找,如此循环,直到结束。二分查找算法之所以快是因为它没有遍历数组的每个元素,而仅仅是查找部分元素就能找到目标或确定其不存在,当然前提是查找范围为有序数组。

Java的简单实现

package me.geed.algorithms;

public class BinarySearch {

	/**
	 * 从一个有序数组(如升序)中找到值为key元素
	 * @param key
	 * @param array
	 * @return  如果找到目标元素,则返回其在数组中的索引,否则返回-1
	 */
	public static int find(int key, int[] array){
		int low = 0;
		int high = array.length - 1;
		while (low <= high) {
			int mid = low + (high - low) / 2;
			if (array[mid] > key) {
				high = mid - 1;
			} else if (array[mid] < key) {
				low = mid + 1;
			} else {
				return mid;
			}			
		}
		return -1;		
	}
	
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		int[] array = {2, 3, 5, 9, 10, 13, 23, 45, 78, 89, 100, 128, 256};
		System.out.println("目标元素索引值:" + BinarySearch.find(9, array));		
		System.out.println("目标元素索引值:" + BinarySearch.find(26, array));
	}

}
输出结果为:

目标元素索引值:3
目标元素索引值:-1

二分查找算法的时间复杂度

假设范围数组长度为N,则二分查找的时间复杂度为OlogN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值