Light oj 1252 - Maintaining Communities(树形dp)

本文探讨了社交网络中社区维护的问题,通过给定的连接和成本信息,研究如何将社区分解为多个成本不超过特定阈值的子社区,同时最小化社区数量。文章详细阐述了解决方案和算法实现,旨在提供一种有效的策略来平衡社交网络的成本与用户体验。

1252 - Maintaining Communities
Time Limit: 2 second(s)Memory Limit: 32 MB

Tracking Communities in social networks, like facebook, twitter etc, are one of the most exiting works in the field of Artificial Intelligence now-a-days. A community is a group of people who are connected. Two persons are connected and form a community if they are directly connected or connected via some other persons. That means if person A and B are connected and B and C are also connected then Aand C are connected and they all belong to the same community. It is quite obvious that, one single person can also form a community by himself.

Now you are given a description of a community where there are n persons and the connections between some pairs of the persons. You can assume that they do form a community and their connection is given such that if you want to find two peoples connectivity information, you will find exactly one path between them.

Now maintaining a connection between a pair requires some cost. And unfortunately, the social networking site cannot afford keeping a community which requires a cost of more than K. For example, say A and B and B and C are connected and cost(A, B) = 5cost(B, C) = 2. Then if K ≥ 7, they can afford this community. Otherwise they cannot.

So, they have made a plan, and that is they will break the community. They want to break the community into multiple communities such that each community requires maintenance cost no more than K. But if there are too many communities people may leave the network, that's why they want the minimum number of communities. Since you are the best, they find no option but to ask you.

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing two integers n (1 ≤ n ≤ 100) and K (1 ≤ K ≤ 100). Each of the next n - 1 lines contains three integers u v w (1 ≤ u, v ≤ n, 1 ≤ w ≤ 100, u ≠ v) meaning that there is a connection between person u and v and the maintenance cost of this connection is w.

Output

For each case, print the case number and the minimum number of communities they have to maintain.

Sample Input

Output for Sample Input

2

3 1

1 2 2

2 3 2

4 12

1 2 5

2 3 10

1 4 7

Case 1: 3

Case 2: 2

 


PROBLEM SETTER: JANE ALAM JAN, ZOBAYER HASAN

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define bug printf("hihi\n")

#define eps 1e-12

typedef long long ll;
using namespace std;
#define INF 0x3f3f3f3f
#define N 205

int dp[N][N];

struct stud{
  int to,ne,len;
}e[N*2];

int head[N];
int num;
int n,k;

inline void add(int u,int v,int len)
{
    e[num].to=v;
    e[num].len=len;
    e[num].ne=head[u];
    head[u]=num++;
}

void dfs(int u,int pre)
{
      int i,j;
      for(int v=0;v<=k;v++)
        dp[u][v]=1;         //首先每个点为一个快
      for(int i=head[u];i!=-1;i=e[i].ne)
      {
          int to=e[i].to;

          if(to==pre) continue;
          dfs(to,u);


          for(int v=k;v>=0;v--)
              {
                  int t=INF;
                  for(int vv=0;vv<=k;vv++)
                 {
                    t=min(dp[to][vv],t);
                    if(v+vv+e[i].len<=k)
                       dp[u][v+vv+e[i].len]=min(dp[u][v+vv+e[i].len],dp[u][v]+dp[to][vv]-1);
                  }
                dp[u][v]+=t;
              }
      }
}

int main()
{

   int i,j,t,ca=0;
   scanf("%d",&t);
   while(t--)
   {
       scanf("%d%d",&n,&k);
       memset(head,-1,sizeof(head));
       num=0;
       int u,v,len;
       i=n-1;
       while(i--)
       {
           scanf("%d%d%d",&u,&v,&len);
           add(u,v,len);
           add(v,u,len);
       }
       dfs(1,-1);

       int ans=INF;
       for(int i=0;i<=k;i++)
           ans=min(ans,dp[1][i]);
       printf("Case %d: %d\n",++ca,ans);
   }
   return 0;
}





内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值