HDU 1080 Human Gene Functions(LCS变形)

Human Gene Functions

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2661    Accepted Submission(s): 1504


Problem Description
It is well known that a human gene can be considered as a sequence, consisting of four nucleotides, which are simply denoted by four letters, A, C, G, and T. Biologists have been interested in identifying human genes and determining their functions, because these can be used to diagnose human diseases and to design new drugs for them. 

A human gene can be identified through a series of time-consuming biological experiments, often with the help of computer programs. Once a sequence of a gene is obtained, the next job is to determine its function. One of the methods for biologists to use in determining the function of a new gene sequence that they have just identified is to search a database with the new gene as a query. The database to be searched stores many gene sequences and their functions – many researchers have been submitting their genes and functions to the database and the database is freely accessible through the Internet. 

A database search will return a list of gene sequences from the database that are similar to the query gene. Biologists assume that sequence similarity often implies functional similarity. So, the function of the new gene might be one of the functions that the genes from the list have. To exactly determine which one is the right one another series of biological experiments will be needed. 

Your job is to make a program that compares two genes and determines their similarity as explained below. Your program may be used as a part of the database search if you can provide an efficient one. 

Given two genes AGTGATG and GTTAG, how similar are they? One of the methods to measure the similarity of two genes is called alignment. In an alignment, spaces are inserted, if necessary, in appropriate positions of the genes to make them equally long and score the resulting genes according to a scoring matrix. 

For example, one space is inserted into AGTGATG to result in AGTGAT-G, and three spaces are inserted into GTTAG to result in –GT--TAG. A space is denoted by a minus sign (-). The two genes are now of equal length. These two strings are aligned: 

AGTGAT-G 
-GT--TAG 

In this alignment, there are four matches, namely, G in the second position, T in the third, T in the sixth, and G in the eighth. Each pair of aligned characters is assigned a score according to the following scoring matrix.

* denotes that a space-space match is not allowed. The score of the alignment above is (-3)+5+5+(-2)+(-3)+5+(-3)+5=9. 

Of course, many other alignments are possible. One is shown below (a different number of spaces are inserted into different positions): 

AGTGATG 
-GTTA-G 

This alignment gives a score of (-3)+5+5+(-2)+5+(-1) +5=14. So, this one is better than the previous one. As a matter of fact, this one is optimal since no other alignment can have a higher score. So, it is said that the similarity of the two genes is 14.
 

Input
The input consists of T test cases. The number of test cases ) (T is given in the first line of the input. Each test case consists of two lines: each line contains an integer, the length of a gene, followed by a gene sequence. The length of each gene sequence is at least one and does not exceed 100. 
 

Output
The output should print the similarity of each test case, one per line. 
 

Sample Input
  
2 7 AGTGATG 5 GTTAG 7 AGCTATT 9 AGCTTTAAA
 

Sample Output
  
14 21
 

Source
 

Recommend
We have carefully selected several similar problems for you:   1074  1227  1224  1160  1501 
 

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<string>
#include<iostream>
#include<queue>
#include<cmath>
#include<map>
#include<stack>
#include<bitset>
using namespace std;
#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
typedef long long ll;
#define bug printf("hi\n")
#define INF 0x3f3f3f3f
#define N 100005

using namespace std;

#define N 105

int va[N*5][N*5];
char a[N],b[N];
int lena,lenb;
int dp[N][N];

void inint()
{
    va['A']['A']=5;
    va['A']['C']=-1;
    va['A']['G']=-2;
    va['A']['T']=-1;
    va['A']['-']=-3;

    va['C']['A']=-1;
    va['C']['C']=5;
    va['C']['G']=-3;
    va['C']['T']=-2;
    va['C']['-']=-4;

    va['G']['A']=-2;
    va['G']['C']=-3;
    va['G']['G']=5;
    va['G']['T']=-2;
    va['G']['-']=-2;

    va['T']['A']=-1;
    va['T']['C']=-2;
    va['T']['G']=-2;
    va['T']['T']=5;
    va['T']['-']=-1;

    va['-']['A']=-3;
    va['-']['C']=-4;
    va['-']['G']=-2;
    va['-']['T']=-1;
    va['-']['-']=-INF;
}

void DP()
{
    int i,j;
    for(i=0;i<=lena;i++)
        for(j=0;j<=lenb;j++)
          dp[i][j]=-INF;

    dp[0][0]=0;
    dp[1][0]=va[a[1]]['-'];
    dp[0][1]=va['-'][b[1]];
    for(i=1;i<=lena;i++)
       dp[i][0]=dp[i-1][0]+va[a[i]]['-'];
    for(i=1;i<=lenb;i++)
        dp[0][i]=dp[0][i-1]+va['-'][b[i]];

    for(i=1;i<=lena;i++)
        for(j=1;j<=lenb;j++)
       {
          dp[i][j]=dp[i-1][j-1]+va[a[i]][b[j]];
          dp[i][j]=max(dp[i][j],dp[i-1][j]+va[a[i]]['-']);
          dp[i][j]=max(dp[i][j],dp[i][j-1]+va['-'][b[j]]);
       }
     printf("%d\n",dp[lena][lenb]);
}

int main()
{
    int i,j,t;
    inint();

    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%s",&lena,a+1);
        scanf("%d%s",&lenb,b+1);
        DP();
    }
    return 0;
}




内容概要:本文详细介绍了一个基于Java和Vue的联邦学习隐私保护推荐系统的设计与实现。系统采用联邦学习架构,使用户数据在本地完成模型训练,仅上传加密后的模型参数或梯度,通过中心服务器进行联邦平均聚合,从而实现数据隐私保护与协同建模的双重目标。项目涵盖完整的系统架构设计,包括本地模型训练、中心参数聚合、安全通信、前后端解耦、推荐算法插件化等模块,并结合差分隐私与同态加密等技术强化安全性。同时,系统通过Vue前端实现用户行为采集与个性化推荐展示,Java后端支撑高并发服务与日志处理,形成“本地训练—参数上传—全局聚合—模型下发—个性化微调”的完整闭环。文中还提供了关键模块的代码示例,如特征提取、模型聚合、加密上传等,增强了项目的可实施性与工程参考价值。 适合人群:具备一定Java和Vue开发基础,熟悉Spring Boot、RESTful API、分布式系统或机器学习相关技术,从事推荐系统、隐私计算或全栈开发方向的研发人员。 使用场景及目标:①学习联邦学习在推荐系统中的工程落地方法;②掌握隐私保护机制(如加密传输、差分隐私)与模型聚合技术的集成;③构建高安全、可扩展的分布式推荐系统原型;④实现前后端协同的个性化推荐闭环系统。 阅读建议:建议结合代码示例深入理解联邦学习流程,重点关注本地训练与全局聚合的协同逻辑,同时可基于项目架构进行算法替换与功能扩展,适用于科研验证与工业级系统原型开发。
源码来自:https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值