|
Language:
Longest Ordered Subsequence
Description
A numeric sequence of
ai is ordered if
a1 <
a2 < ... <
aN. Let the subsequence of the given numeric sequence (
a1,
a2, ...,
aN) be any sequence (
ai1,
ai2, ...,
aiK), where 1 <=
i1 <
i2 < ... <
iK <=
N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence. Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input 7 1 7 3 5 9 4 8 Sample Output 4 Source
Northeastern Europe 2002, Far-Eastern Subregion
|
[Submit] [Go Back] [Status] [Discuss]
求最长递增子序列
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
#define eps 1e-8
using namespace std;
#define N 1005
int dp[N],n,a[N];
int main()
{
int i,j;
while(~scanf("%d",&n))
{
for(i=1;i<=n;i++)
scanf("%d",&a[i]);
int ans=1;
dp[1]=1;
int temp;
for(i=2;i<=n;i++)
{
temp=0;
for(j=1;j<i;j++)
if(a[j]<a[i]&&temp<=dp[j])
temp=dp[j];
dp[i]=temp+1;
if(dp[i]>ans)
ans=dp[i];
}
printf("%d\n",ans);
}
return 0;
}
本文介绍了一种解决最长递增子序列问题的经典算法,并通过示例解释了该算法的工作原理。文章提供了一个完整的C++代码实现,展示了如何计算给定序列中最长递增子序列的长度。
2101

被折叠的 条评论
为什么被折叠?



