Going Home - POJ 1295 KM算法

最小费用匹配算法解决送人入屋问题
本文介绍了一种使用最小费用匹配算法解决在网格地图上将人数分配到不同房屋的问题,确保每个人到达其对应房屋的最小费用。算法通过构建费用矩阵,利用KM算法寻找最优配对方案。

Going Home
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 19296 Accepted: 9810

Description

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a '.' means an empty space, an 'H' represents a house on that point, and am 'm' indicates there is a little man on that point. 

You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

Input

There are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of 'H's and 'm's on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M.

Output

For each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay.

Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Output

2
10
28

题意:每个人m需要到一个家H里,一个人走一个单位的花费为1,求最小的花费总和。

思路:裸KM算法,其实费用流也是可以的。

参考:http://www.cnblogs.com/skyming/archive/2012/02/18/2356919.html

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
using namespace std;
int n,m,w[110][110],nx,ny,x1[110],y1[110],x2[110],y2[110],INF=1e9;
int lx[110],ly[110],linky[110],slack[110];
bool visx[110],visy[110];
char s[110][110];
bool Find(int x)
{
    int y,t;
    visx[x]=1;
    for(y=1;y<=ny;y++)
       if(!visy[y])
       {
           t=lx[x]+ly[y]-w[x][y];
           if(t==0)
           {
               visy[y]=1;
               if(linky[y]==-1 || Find(linky[y]))
               {
                   linky[y]=x;
                   return true;
               }
           }
           else if(slack[y]>t)
             slack[y]=t;
       }
    return false;
}
int KM()
{
    int i,j,k,x,y,d,ans=0;
    memset(linky,-1,sizeof(linky));
    memset(ly,0,sizeof(ly));
    for(i=1;i<=nx;i++)
    {
        lx[i]=-INF;
        for(j=1;j<=ny;j++)
           lx[i]=max(lx[i],w[i][j]);
    }
    for(i=1;i<=nx;i++)
    {
        for(j=1;j<=ny;j++)
           slack[j]=INF;
        while(true)
        {
            memset(visx,0,sizeof(visx));
            memset(visy,0,sizeof(visy));
            if(Find(i))
              break;
            d=INF;
            for(j=1;j<=ny;j++)
               if(!visy[j] && d>slack[j])
                 d=slack[j];
            for(j=1;j<=nx;j++)
               if(visx[j])
                 lx[j]-=d;
            for(j=1;j<=ny;j++)
               if(visy[j])
                 ly[j]+=d;
               else
                 slack[j]-=d;
        }
    }
    for(j=1;j<=ny;j++)
      if(linky[j]>-1)
        ans+=w[linky[j]][j];
    return ans;
}
int main()
{
    int i,j,k,ans;
    while(~scanf("%d%d",&n,&m) && n+m)
    {
        for(i=1;i<=n;i++)
           scanf("%s",s[i]+1);
        nx=ny=0;
        for(i=1;i<=n;i++)
           for(j=1;j<=m;j++)
              if(s[i][j]=='H')
              {
                  nx++;
                  x1[nx]=i;y1[nx]=j;
              }
              else if(s[i][j]=='m')
              {
                  ny++;
                  x2[ny]=i;y2[ny]=j;
              }
        for(i=1;i<=nx;i++)
           for(j=1;j<=ny;j++)
              w[i][j]=-abs(x1[i]-x2[j])-abs(y1[i]-y2[j]);
        ans=KM();
        printf("%d\n",-ans);
    }
}


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值