Common Subsequence
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 37262 | Accepted: 14880 |
Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1,
i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find
the length of the maximum-length common subsequence of X and Y.
Input
The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.
Output
For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
Sample Input
abcfbc abfcab programming contest abcd mnp
Sample Output
4 2 0
题意:最长非连续公共子序列的长度。
思路:dp[i][j]表示到s1的i位置和s2的j位置的时候,最长非连续公共子序列的长度。dp[i][j]=max(dp[i-1][j],dp[i][j-1]);如果ij位置的字母相同的时候dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
AC代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s1[1010],s2[1010];
int dp[1010][1010];
int main()
{ int i,j,k,len1,len2;
while(~scanf("%s %s",s1,s2))
{ len1=strlen(s1);
len2=strlen(s2);
memset(dp,0,sizeof(dp));
for(i=1;i<=len1;i++)
for(j=1;j<=len2;j++)
{ dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if(s1[i-1]==s2[j-1])
dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
}
printf("%d\n",dp[len1][len2]);
}
}

本文深入探讨了最长非连续公共子序列问题的解决方法,通过动态规划技术求解,提供了一种高效的算法解决方案,并附有AC代码实例。
564

被折叠的 条评论
为什么被折叠?



