题目
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.
Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3]
.
The largest rectangle is shown in the shaded area, which has area = 10
unit.
Example:
Input: [2,1,5,6,2,3] Output: 10
思路:记录左方向和右方向第一个小于当前值的下标。O(n)复杂度。
for (int i = 1; i < height.length; i++) {
int p = i - 1;
while (p >= 0 && height[p] >= height[i]) {
p--;
}
lessFromLeft[i] = p;
}
The only line change shifts this algorithm from O(n^2) to O(n) complexity: we don't need to rescan each item to the left - we can reuse results of previous calculations and "jump" through indices in quick manner:
while (p >= 0 && height[p] >= height[i]) {
p = lessFromLeft[p];
}
代码:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
if(heights.size() == 0) return 0;
int Len = heights.size();
vector<int> lessFromRight(Len),lessFromLeft(Len);
lessFromRight[Len-1] = Len;
lessFromLeft[0]=-1;
for(int i = 1; i < Len; i++){
int p = i - 1;
while(p >= 0 && heights[p]>=heights[i]) p = lessFromLeft[p]; //左侧方向第一个比当前值小的下标
lessFromLeft[i] = p;
}
for(int i = Len - 2; i >= 0; i--){
int p = i + 1;
while(p < Len && heights[p] >= heights[i]) p = lessFromRight[p]; //右侧方向第一个比当前值小的下标
lessFromRight[i] = p;
}
int maxArea = 0;
for(int i = 0; i < Len; i++){
maxArea = max(maxArea, heights[i]*(lessFromRight[i] - lessFromLeft[i] - 1));
}
return maxArea;
}
};