POJ 3264 Balanced Lineup

本文介绍了一种游戏场景中快速查询指定范围内玩家高度差的方法,通过使用线段树和RMQ算法来提高查询效率,对比了两种方法的时间性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Balanced Lineup
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 33094 Accepted: 15552
Case Time Limit: 2000MS

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

打算用两种方法做,顺便区别一下,RMQ和线段树的区别。他们都都说RMQ比线段树好,我发现时间也差不了多少,虽然都没优化


AC代码如下:


线段树!

///线段树   2250MS   2404K

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define  M 50010
#define inf 100000000
using namespace std;

struct H
{
    int l,r,maxx,minn;
}trees[4*M];

int n,m;
int num[M];

void build_trees(int jd ,int l,int r)
{
    trees[jd].l=l;trees[jd].r=r;
    if(l==r)
    {
        trees[jd].maxx=num[l];
        trees[jd].minn=num[l];
        return ;
    }
    int mid = (l+r)/2;
    build_trees(jd*2,l,mid);
    build_trees(jd*2+1,mid+1,r);
    trees[jd].maxx=max(trees[jd*2].maxx,trees[jd*2+1].maxx);
    trees[jd].minn=min(trees[jd*2].minn,trees[jd*2+1].minn);
}

int query_max(int jd,int l,int r)
{
    int ans=0;
    if(l<=trees[jd].l&&r>=trees[jd].r)
        return trees[jd].maxx;
    int mid = (trees[jd].l+trees[jd].r)/2;
    if(l<=mid) ans=max(ans,query_max(jd*2,l,r)) ;
    if(r>mid) ans=max(ans,query_max(jd*2+1,l,r));
    return ans;
}

int query_min(int jd,int l,int r)
{
    int ans=inf;
    if(l<=trees[jd].l&&r>=trees[jd].r)
        return trees[jd].minn;
    int mid = (trees[jd].l+trees[jd].r)/2;
    if(l<=mid) ans=min(ans,query_min(jd*2,l,r)) ;
    if(r>mid) ans=min(ans,query_min(jd*2+1,l,r));
    return ans;
}

int main()
{
    int i,j;
    int a,b;
    while(~scanf("%d%d",&n,&m))
    {
        memset(num,0,sizeof num);
        for(i=1;i<=n;i++)
        scanf("%d",&num[i]);
        build_trees(1,1,n);
        for(i=1;i<=m;i++)
        {
            scanf("%d%d",&a,&b);
            printf("%d\n",query_max(1,a,b)-query_min(1,a,b));
        }
    }
    return 0;
}


RMQ!!!


///RMQ  1813MS  12100K

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define  M 50010
#define inf 100000000
using namespace std;

int n,m;
int num[M];
int dp1[M][30],dp2[M][30];

void RMQ_min()
{
    int i,j;
    memset(dp1,0,sizeof dp1);
    for(i=1;i<=n;i++)
        dp1[i][0]=num[i];
    for(j=1;1<<j<=n;j++)
        for(i=1;i+(1<<j)-1<=n;i++)
            dp1[i][j]=min(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
}

void RMQ_max()
{
    int i,j;
    memset(dp2,0,sizeof dp2);
    for(i=1;i<=n;i++)
        dp2[i][0]=num[i];
    for(j=1;1<<j<=n;j++)
        for(i=1;i+(1<<j)-1<=n;i++)
            dp2[i][j]=max(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
}

int rmq_min(int l,int r)
{
    int i,j;
    int k=0;
    while(1<<(k+1)<=r-l+1)
        k++;
    return min(dp1[l][k],dp1[r-(1<<k)+1][k]);
}

int rmq_max(int l,int r)
{
    int i,j;
    int k=0;
    while(1<<(k+1)<=r-l+1)
        k++;
    return max(dp2[l][k],dp2[r-(1<<k)+1][k]);
}

int main()
{
    int i,j;
    int a,b;
    while(~scanf("%d%d",&n,&m))
    {
        for(i=1;i<=n;i++)
            scanf("%d",&num[i]);
            RMQ_min();
            RMQ_max();
            for(i=1;i<=m;i++)
            {
                scanf("%d%d",&a,&b);
                printf("%d\n",rmq_max(a,b)-rmq_min(a,b));
            }

    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值